
An application of ranking methods: retrieving the importance order of decision
factors

Anna Lázár1 and András Kocsor2,*
1Pázmány Péter Catholic University – Information Technology Department

H-1083 Budapest, Práter utca 50/a
2Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged

H-6720 Szeged, Aradi vértanúk tere 1., Hungary

* The author was supported by the János Bolyai fellowship of the Hungarian Academy of Sciences.

Abstract – In this paper we describe a method that returns the
order of decision factors using ranking information, which can
thus be interpreted as an inverse approach of the well-known
Analytic Hierarchy Process (AHP). The adoption of the
algorithm is conceivable in several fields, especially in those that
examine or employ human decision attitudes. The accuracy of
the method is investigated using both artificial and real data. In
the first case we could reproduce a set of artificially generated
importance orders of a fixed number of decision factors with a
ninety percent correspondence, while in the second case we
demonstrated how the method works when people were asked to
rank 100 different sports.

Keywords – Analytic Hierarchy Process, attitudes, decision
theory, decision factors, ranking methodologies, ranking
algorithms

I. MOTIVATION

Methods that are well-known in the area of machine
learning [3, 10, 16-18] could be a great help in
psychologists practice with a few minor modifications:
eliciting peoples preferences can be very helpful in almost
any field. For example a well- known situation is when
young adults have to decide about their goals in life: what
profession should they choose? While most of them usually
have more or less clear impressions about the various
professions (in other words they can say how much they
like or dislike them - in technical terminology they rank the
professions), those are only the most unique cases when a
young adult can correctly define how important a feature of
a profession is when he/she has to form an opinion about it.
Thus it would be most advantageous if we could somehow
generate the importance of the personal decision factors
from ranking information given by them. Or we can think
about more abstract fields: why does someone prefer one
political candidate or film star to another? Does it largely
depend on his personality, appearance or talents? How big
is the correlation between these aspects among the every-
day people? In this paper the expression “decision factors"
is a central notion which we interpret as the various aspects
that play a conscious or unconscious role in forming an

attitude decision on about object. The primary purpose here
is to introduce a method that returns the importance order
of distinct decision factors by taking ranking information as
a basis.

II. INTRODUCTION

While the Analytic Hierarchy Process (AHP) [12] is a
well-tried and tested method, the "reverse approach" has
had much less notice as it deserves. This means that
transforming between decision factor weights and ranking
information is possible in either direction: from weights
into ranking (which is the conventional AHP approach),
and also from ranking information into decision factor
weights (this is what we call the "reverse approach" a bit
imprecise: it is not exactly the inverse of the AHP in
matemathical sense, but rather in direction and
approach.).The method proposed in this paper returns
weights from ranking information and we also apply these
values in the experiments for creating ranking values again
with the intention of comparing real rankings with rankings
obtained from other methods. Here it should be mentioned
that we only recommend the present process be used for
retrieving the importance order of the decision factors, not
merely the weights. Several reasons suggest this decision.
Firstly, numerous studies [1, 4, 7, 11, 15] argue that
weights obtained from multi-attribute value trees are not
too precise: the exact value depends on the structure of the
tree, even when we employ the same methodology.
Secondly, the order of the factor weights are more stable
than their mere value. The paper is structured as follows:
The next section gives a brief overview of the AHP
method. Section 4 describes the decision factorization (DF)
method - the reverse approach of AHP -, while Section 5
provides an account of the experiments done using both
artificial and real data. Finally, we round off the paper with
concluding remarks and suggestions for future study.

III. THE AHP METHOD

Here we only undertake to briefly summarize the AHP
method without the requirements of completeness. For
further details the interested reader may consult [13, 14] if
they wish. The first step in the AHP method is to divide the
problem into sub-problems, which are structured into
hierarchical levels. The number of levels depends on the
complexity of the initial problem. The leaves contain the
possible choices. The next step is to establish the pairwise
comparison matrices for each level. These are used both for
weighting the factors and weighting the possible choices
from each viewpoint, one after the other. In plain terms,
decision makers are asked to assign an importance weight
from a scale of 1, 3, 5, 7 and 9, from "of equal importance"
to "extreme importance". In some cases the intermediate
values of 2, 4, 6, 8 can also be used. Since the aij-th element
of the pairwise comparison matrix shows how many times
the i-th element is more important than the j-th element, the
aji-th element will be its reciprocal. These matrices are
positive and reciprocal matrices, i.e. aij > 0 and aij = 1/aji for
∀ i, j = 1, …, n.

For each viewpoint, the experts have to perform (n/2)
(n-1) comparisons for a category of n elements. Once these
pairwise comparison matrices are filled, the corresponding
weights for the elements can be found by solving the
appropriate eigenvalue-eigenvector equation. The desired
weights are identified by examining the eigenvector
associated with the largest eigenvalue. Once these
importance-weights of the various decision factors are
known, the ranking information can easily be evaluated:
First we have an object (with known factor-values) which
we want to rank, and second we also know the personal
importance of these factors (these are the weights): the rank
of the object is defined by the weighted sum of the proper
factor values.

IV. DECISION FACTORIZATION: THE REVERSE
APPROACH OF THE AHP METHOD

This time we take the ranking-values offered by the
decision maker as a starting-point, and we attempt to
produce the weights of the decision factors that appear in
the ranking-decisions. For this reason we make the
following assumptions:
i) It makes sense to talk about `collective weights'

associated with a set of decision factors, and it is
possible to express them in terms of the particular
weights.

ii) Ranking algorithms are available (cf. [6]). Now we will
furnish the skeleton that describes the ranking
algorithms in a nutshell. Suppose we have a sequence of
instances (represented by n dimensional vectors) and a
rank for each of them. This is formally a series of
(x1,r1),…,(xk; rk), where xi ∈ℜ n

 and ri∈ {1,…,z} is a
finite set of integers. Each xi vector represents an object
described with n features, while ri is the rank of the ith
instance. Without loss of generality we may assume that
the {1,…,z} finite set is ordered with the natural “<”
relation. That means that the instance xi is better than xj,

if yi > yj . The aim of a ranking algorithm is to learn a
person's taste, who ranked the instance-list: after t
rounds, getting a new xt+1 instance to predict its rt+1 rank
as properly as possible. The general make-up of an
online ranking algorithm is:

Loop: for t = 1,2,...,length of the object-list
- predict ŷt, the suggested rank of the xt object
- get yt, the real rank of xt and update the prediction rule
End Loop

(Although we outline here the schema of the online ranking
algorithms, one may apply offline methods as well. An advantage
of an online method is that it can be used in web applications with
dynamically changing databases)

iii) There is an expressible relation between the 'collective

weights' of a set of decision factors (feature
components) and the ranking loss we obtain from a
ranking algorithm applied to the same features.

Before outlining the method, we still need to give a

mathematical formulation for the `ranking loss' and the
`collective weight'.

 Ranking loss. Let us number the decision factors from 1
to n, and define the following set of subsets:

 S = {X | X ⊆ {1, …, n} }; (1)

So every Sj ∈ S is a set of decision factors. Let LossSj be
the ranking loss, i.e. the difference between the true rank
and the predicted rank. LossSj denotes the sum of the losses
accumulated during the run, divided by the number of the
rounds (- which we will denote with T):

 (2)

Collective weight. Let the collective weight belonging

to the factors that are in the Sj set be denoted by C(Sj). Of
the many possibilities the most popular knowledge source
integration rules are the rule of the sum, product,
maximum, minimum and median. These rules lead to the
following collective weights, where wi denotes the weight
of the ith decision factor:

• The sum rule:

 (3)

• The product rule:

• The maximum rule:

• The minimum rule:

∑
∈

=
jSi

ij wSC)(

∏
∈

=
jSi

ij wSC)(

iSij wSC
j∈= max)(

iSij wSC
j∈= min)(

iSij wmedSC
j∈=)(

• The median rule:

 Decision factorization method. Let us introduce an
ƒ:ℜ→ℜ _ _ function, that converts the ranking loss into, say, a
`performance' value. f can be defined for example as
f(LossSj) = 1/LossSj or f(LossSj) = -log(LossSj) or some other
similar function. Now choose a function f, a ranking
algorithm and a knowledge source integration rule for the
calculation of the collective weights. With this and the
previous considerations we can outline the skeleton of our
decision factorization method (DF).

1) Select l pairwise, distinct decision factor sets: S1,…,Sl.

2) Run the ranking algorithm for all Sj employing its
decision factors.

3) Measure the ranking loss LossSj for all j and compute the
performance values using the f function.

4) Solve the following optimization problem

 (4)

Return ŵ, the weights of the decision factors.

(In the 4th step instead of optimizing the least square error other
error functions can also be applied.)

 Different assumptions about the collective weight and f
function lead to an optimization task that requires using
different optimization methods. In this paper we employ
the approach defined by the sum rule. In this case eq. (4)
takes the following form in matrix notation:

(5)

where

 (6)

and F = (f(LossS1), …, f(LossSl))T.

The solution is :

where A+ denotes the Moore & Penrose pseudo inverse [2,
5], which always exists and can be readily computed.

V. EXPERIMENTS

In this section we first introduce three measure functions
which we used for demonstrating the performance of the
method. Then in Section B we give an account of the

experiments that we performed on artificial data, while
Section C contains our observations on real data. In the
experiments Crammer and Singer's `PRank' algorithm [6]
was used as a ranking algorithm and the function f was
chosen to be -log(z).

A. Measure functions

Kendall's ττττ. This is used for comparing the ordinal
correlation between two sequences of numbers [9, 8]. Thus
we have to define the values C and D that τ applies:

C is the number of concordant pairs, D is the
number of discordant pairs, and an i,j pair is concordant if
both sequences order it in the same way, and discordant
otherwise. Then

where the sum of C and D gives the number of all possible
pairs, 2 over m, where m is the length of sequence, i.e. the
number of decision factors used in this paper. Note that the
totally equal order - the identity - indicates 1, random
orders give about zero, while the reverse order is
represented with a -1.

The number of correct positions. This indicates that how
many positions match the exact value. In this paper, how
many factors have been ordered to the right position in the
importance order.

Consistency. Since we approximated the F performance
vector by Aw (see eq. (5)), measuring the angle γ between
F and Aw vectors can provide some useful information:

B. Tests on Artificial data

In order to investigate the performance of the DF method
we carried out the following experiments. First, we
generated 500 7-dimensional random vectors uniformly
from the unit square [0; 1]7. These vectors form a 500 by 7
matrix, which may be interpreted as 500 objects, each
described with 7 features. Then we randomly generated 50
preference-weights: these are feature-orders where the first
place contains the most important feature, the second place
the second most important factor, and so on. With these
data sets we could generate the ranking-vectors (50 of
them) that one would give with the preference-order we
generated above. Then we added a normally distributed
noise with a zero mean and a standard deviation of 0.125 to
these ranking vectors. Generating ranking-vectors like
these makes the calculation of Kendall's τ possible.

∑
=

−=
l

j
Sjw j

LossfSCw
1

2
^

))()((minarg

2
2

1

2
^

||||))()((minarg FAwLossfSCw
l

j
Sjw j

−=−= ∑
=

∉
∈

=
j

j

ij Siif

Siif
a

0

1

FAw +=
^

−=

+
−=

+
−=

2

2
1

2
1

m
D

DC

D

DC

DCτ

||||||||

)(
)cos(

FAw

FAw T

=γ

Table I. Results using artificial data. The rows correspond to
Kendall's τ, the number of correct positions and consistency, while
the columns correspond to 6 sets of decision factor subsets. Setk
has k over 7 subsets, each containing k decision factor(s). Each k
value in the table should be interpreted as an average of the 50
values.

 Set1 Set2 Set3 Set4 Set5 Set6
τ value 0.47 0.60 0.74 0.78 0.76 0.74
τ in % 73.5% 80% 87% 89.43% 88% 87%

No of correct
positions

4.22 5.24 5.82 6.24 6.06 5.96

in % 60% 74.86% 83% 89% 86.57% 85%
consistency

(cos (γ))
1 0.9998 0.9997 0.9996 0.9995 1

 We know the output of the DF algorithm, and we also
know the 'real` preference-orders since we defined them
before.
After doing these we formed 6 sets of feature-subsets
(decision factors): Set1 contained 1 over 7, that is 7 subsets,
each with one (distinct) features in it. Set2 contained 2 over
7 that is 21 subsets, each subset with 2 features in it,…, Sk

contained k over 7 subsets, each with k elements in it (1 ≤ k
≤ 6). Then, after applying our DF method, we computed
Kendall's τ, the number of correct positions and the
consistency for each set of subsets. The results are given in
Table 1.
 In the Set1 and Set6 cases the consistency value was 1.
This was because 1 over 7 = 6 over 7 = 7, the number of
unknown values in Aw = F (cf. eq. (5)) and the number of
equations are the same. In the other cases, when we had
more equations than unknown values, the high value of γ
indicated that the sum rule assumption on the collective
weight led to a reliable and consistent result. The high
values of τ and the number of correct positions also
indicate the reliability of the method. Further, notice that
the accuracy depends on the size of the feature subsets. As
regards the τ values the method attains its maximum in the
case of Set4.

C. Tests on Real data

With the aim of investigating the method on real data we
made a list that contained one hundred kinds of sports, and
valued all of them from nine points of view. (For example
how spectacular, how tiring the given sport generally is, is
it a ball-game, is it aquatic sport, etc.) In mathematical
terms: we replaced each sport with a nine dimensional
vector, where every element of the vector represented one
of the nine features. Then we asked 60 people to rank all
the sports from 1 to 10: 1 if he/she didn't like it at all, and
10 if he/she was "enthusiastic" about it. We intentionally
didn't let them know what we meant about "liking" a sport:
we asked purely for the "individual sympathy". These
ranking lists then provided the input data for the DF
algorithm, which returned a first set of decision factor
weights. Afterwards, we asked the same people to fill out
an AHP pairwise comparison matrix as well: they were
asked to compare the importance of the nine features while
making a ranking decision.

Table II. Test results on real data. The numbers indicate the
average ranking loss.

 PRank
algorithm

AHP method DF algorithm

Average
ranking loss

2.8

3.1

2.1

 These matrices - using an eigenanalysis - provided a
second set of decision factor weights, those that could be
obtained with the well known AHP methods.
With values for these two kinds of weights we could
generate two ranking-vectors. Then we compared them
with the real ranks (given "in direct") using the ranking loss
function. Furthermore, as a reference point we also
compared the real rank values with the rank values
provided directly by the 'PRank' ranking algorithm when all
the features were used. (In this case for the computation of
the ranking loss we only took into account the second 50
ranking values and treated the first 50 as training data.)
 As it can be seen in Table 2, the DF algorithm provided
32% more proper ranking values than the weights obtained
from the AHP matrices provided, and achieved a 25%
better accuracy than the PRank algorithm in an immediate
use. We also evaluated the AHP matrices based on another
consistency definition ((n-λmax)/(n-1)), which is commonly
used in AHP methodology, and obtained an average value
0.096. Since this number indicates such a high consistency,
we came to the conclusion that while people are quite
consistent in comparing the decision factor pairs, they still
cannot make their ranking decisions according to these
factor weights. Overall these results correspond to the
observation, frequently described by psychologists that
while people think they know their own decision factor
weights at least approximately, in real life they influenced
by different weights.

VI. CONCLUSIONS AND FUTURE WORK

While AHP gives quite fair decision factor weights in
conscious decisions, comparison matrices do not provide
accurate information about less conscious decision factor
weights. In spite of this, these decision factor preferences
also can be attained from ranking information. Hence first
of all we recommend the method be applied to cases when
the required decision factor preferences are applied to less
conscious decisions (see section I for motivations). The
Decision Factorization (DF) method introduced in this
paper first defines different sets of decision factors. Then it
executes a ranking algorithm and computes the ranking loss
on each of these sets. This step is followed by expressing a
connection between the collective weights and ranking loss
that are associated with the previous sets of decision
factors. This leads to the optimization problem defined by
eq. (4) which is then solved. Lastly, we are planning to test
the performance of the method with different ranking
algorithms and with other knowledge source integration
rules as well. In another future experiment we also intend
to check the DF method on web-based applications with
dynamically changing databases such as online bookstores
where customers can vote for the books they have read.

REFERENCES

[1] Belton, V., A “Comparison of the Analytic Hierarchy Process and a
Simple Multi-Attribute Value Function”, European Journal of
Operat. Res., 26, pp. 7-21, 1986.

[2] Ben-Israel, A., Greville, T., “Generalized Inverses: Theory and
Applications”, Willey-Interscience, 1974.

[3] Bishop, C. M., Neural Networks for Pattern Recognition, Oxford
Univ. Press, 1995.

[4] Borcherding, K., Eppel, T., von Winterfeldt, D., “Comparison of
Weighting Judgments in Multiattribute Utility Measurement”
Management Science, 37, 12, pp.1603-1619, 1991.

[5] Cambell, S., Meyer, C., “Generalized Inverses of Linear
Transformations”, Pitman, 1979.

[6] Crammer, K. and Singer, Y., “Pranking with Ranking”, Advances in
Neural Information Processing Systems , 2002

[7] Hobbs, B.F., “A Comparison of Weighting Methods in Power Plant
Siting”, Decision Science, Vol. 11, pp. 725-737, 1980.

[8] Joachims, T., “Optimizing Search Engines using Clickthrough
Data”, Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), 2002.

[9] Kendall, M., Gibbons, J. D., Rank Correlation Methods, Oxford
Univ. Press, 5th ed., 1990.

[10] Mitchell, T. M., Machine learning, McGraw-Hill, 1997.
[11] Pöyhönen, M., Hmlinen, R.P., Salo, A., “An experiment on the

numerical modeling of verbal ratio statements”, Journal of Multi-
Criteria Decision Analysis, Vol. 6, pp. 1-10, 1997.

[12] Saaty, T.L. The Analytic Hierarchy Process McGraw-Hill,New
York, 1980.

[13] Saaty, T.L., Multicriteria Decision Making: The Analytic Hierarchy
Process, RWS Publications, Pittsburgh, PA, 1990.

[14] Saaty, T.L., Fundamentals of Decision Making and Priority Theory
with the Analytic Hierarchy Process, RWS Publications, Pittsburgh,
PA, 1994.

[15] Schoemaker, P.J. and Waid, C.C., “An Experimental Comparison of
Different Approaches to Determining Weights in Additive Value
Models”, Management Science, 28, 2, pp. 182-196, 1982.

[16] Vladimir N. Vapnik, The nature of statistical learning theory,
Springer, 1995.

[17] Vladimir N. Vapnik, Statistical learning theory, Wiley, 1998.
[18] Widrow, B. and Hoff, M. E., Adaptive switching circuits, 1960 IRE

WESCON Convention Record, 1960, Reprinted in Neurocomputing
(MIT Press, 1988).

