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Abstract – In this paper we describe a method that returns the 
order of decision factors using ranking information, which can 
thus be interpreted as an inverse approach of the well-known 
Analytic Hierarchy Process (AHP). The adoption of the 
algorithm is conceivable in several fields, especially in those that 
examine or employ human decision attitudes. The accuracy of 
the method is investigated using both artificial and real data. In 
the first case we could reproduce a set of artificially generated 
importance orders of a fixed number of decision factors with a 
ninety percent correspondence, while in the second case we 
demonstrated how the method works when people were asked to 
rank 100 different sports. 
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I. MOTIVATION 

Methods that are well-known in the area of machine 
learning [3, 10, 16-18] could be a great help in 
psychologists practice with a few minor modifications: 
eliciting peoples preferences can be very helpful in almost 
any field. For example a well- known situation is when 
young adults have to decide about their goals in life: what 
profession should they choose? While most of them usually 
have more or less clear impressions about the various 
professions (in other words they can say how much they 
like or dislike them - in technical terminology they rank the 
professions), those are only the most unique cases when a 
young adult can correctly define how important a feature of 
a profession is when he/she has to form an opinion about it. 
Thus it would be most advantageous if we could somehow 
generate the importance of the personal decision factors 
from ranking information given by them. Or we can think 
about more abstract fields: why does someone prefer one 
political candidate or film star to another? Does it largely 
depend on his personality, appearance or talents? How big 
is the correlation between these aspects among the every-
day people? In this paper the expression “decision factors" 
is a central notion which we interpret as the various aspects 
that play a conscious or unconscious role in forming an 

attitude decision on about object. The primary purpose here 
is to introduce a method that returns the importance order 
of distinct decision factors by taking ranking information as 
a basis. 

II. INTRODUCTION 

While the Analytic Hierarchy Process (AHP) [12] is a 
well-tried and tested method, the "reverse approach" has 
had much less notice as it deserves. This means that 
transforming between decision factor weights and ranking 
information is possible in either direction: from weights 
into ranking (which is the conventional AHP approach), 
and also from ranking information into decision factor 
weights (this is what we call the "reverse approach" a bit 
imprecise: it is not exactly the inverse of the AHP in 
matemathical sense, but rather in direction and 
approach.).The method proposed in this paper returns 
weights from ranking information and we also apply these 
values in the experiments for creating ranking values again 
with the intention of comparing real rankings with rankings 
obtained from other methods. Here it should be mentioned 
that we only recommend the present process be used for 
retrieving the importance order of the decision factors, not 
merely the weights. Several reasons suggest this decision. 
Firstly, numerous studies [1, 4, 7, 11, 15] argue that 
weights obtained from multi-attribute value trees are not 
too precise: the exact value depends on the structure of the 
tree, even when we employ the same methodology. 
Secondly, the order of the factor weights are more stable 
than their mere value. The paper is structured as follows: 
The next section gives a brief overview of the AHP 
method. Section 4 describes the decision factorization (DF) 
method - the reverse approach of AHP -, while Section 5 
provides an account of the experiments done using both 
artificial and real data. Finally, we round off the paper with 
concluding remarks and suggestions for future study. 



III. THE AHP METHOD 

Here we only undertake to briefly summarize the AHP 
method without the requirements of completeness. For 
further details the interested reader may consult [13, 14] if 
they wish. The first step in the AHP method is to divide the 
problem into sub-problems, which are structured into 
hierarchical levels. The number of levels depends on the 
complexity of the initial problem. The leaves contain the 
possible choices. The next step is to establish the pairwise 
comparison matrices for each level. These are used both for 
weighting the factors and weighting the possible choices 
from each viewpoint, one after the other. In plain terms, 
decision makers are asked to assign an importance weight 
from a scale of 1, 3, 5, 7 and 9, from "of equal importance" 
to "extreme importance". In some cases the intermediate 
values of 2, 4, 6, 8 can also be used. Since the aij-th element 
of the pairwise comparison matrix shows how many times 
the i-th element is more important than the j-th element, the 
aji-th element will be its reciprocal. These matrices are 
positive and reciprocal matrices, i.e. aij > 0 and aij = 1/aji for 
∀  i, j = 1, …, n. 

For each viewpoint, the experts have to perform (n/2) 
(n-1) comparisons for a category of n elements. Once these 
pairwise comparison matrices are filled, the corresponding 
weights for the elements can be found by solving the 
appropriate eigenvalue-eigenvector equation. The desired 
weights are identified by examining the eigenvector 
associated with the largest eigenvalue. Once these 
importance-weights of the various decision factors are 
known, the ranking information can easily be evaluated: 
First we have an object (with known factor-values) which 
we want to rank, and second we also know the personal 
importance of these factors (these are the weights): the rank 
of the object is defined by the weighted sum of the proper 
factor values. 

IV. DECISION FACTORIZATION: THE REVERSE 
APPROACH OF THE AHP METHOD 

This time we take the ranking-values offered by the 
decision maker as a starting-point, and we attempt to 
produce the weights of the decision factors that appear in 
the ranking-decisions. For this reason we make the 
following assumptions:  
i) It makes sense to talk about `collective weights' 

associated with a set of decision factors, and it is 
possible to express them in terms of the particular 
weights. 

ii) Ranking algorithms are available (cf. [6]). Now we will 
furnish the skeleton that describes the ranking 
algorithms in a nutshell. Suppose we have a sequence of 
instances (represented by n dimensional vectors) and a 
rank for each of them. This is formally a series of 
(x1,r1),…,(xk; rk), where xi ∈ℜ n

 and ri∈ {1,…,z} is a 
finite set of integers. Each xi vector represents an object 
described with n features, while ri is the rank of the ith 
instance. Without loss of generality we may assume that 
the {1,…,z} finite set is ordered with the natural “<” 
relation. That means that the instance xi is better than xj, 

if yi > yj . The aim of a ranking algorithm is to learn a 
person's taste, who ranked the instance-list: after t 
rounds, getting a new xt+1 instance to predict its rt+1 rank 
as properly as possible. The general make-up of an 
online ranking algorithm is:  

 
Loop: for t = 1,2,...,length of the object-list 
- predict ŷt, the suggested rank of the xt object 
- get yt, the real rank of xt and update the prediction rule 
End Loop 

 
(Although we outline here the schema of the online ranking 
algorithms, one may apply offline methods as well. An advantage 
of an online method is that it can be used in web applications with 
dynamically changing databases) 
 
iii) There is an expressible relation between the 'collective 

weights' of a set of decision factors (feature 
components) and the ranking loss we obtain from a 
ranking algorithm applied to the same features.  

 
Before outlining the method, we still need to give a 

mathematical formulation for the `ranking loss' and the 
`collective weight'. 

 
    Ranking loss. Let us number the decision factors from 1 
to n, and define the following set of subsets:  
 

       S = {X | X ⊆  {1, …, n} };                                    (1) 
 

So every Sj ∈  S is a set of decision factors. Let LossSj be 
the ranking loss, i.e. the difference between the true rank 
and the predicted rank. LossSj denotes the sum of the losses 
accumulated during the run, divided by the number of the 
rounds (- which we will denote with T ): 

 

                    (2) 

 
Collective weight. Let the collective weight belonging 

to the factors that are in the Sj set be denoted by C(Sj ). Of 
the many possibilities the most popular knowledge source 
integration rules are the rule of the sum, product, 
maximum, minimum and median. These rules lead to the 
following collective weights, where wi denotes the weight 
of the ith decision factor: 

 
• The sum rule:  

                                                                     (3) 
 
• The product rule:  
 
 
• The maximum rule:    
 
 
• The minimum rule:  
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• The median rule:  
 

    Decision factorization method. Let us introduce an 
ƒ:ℜ→ℜ _  _ function, that converts the ranking loss into, say, a 
`performance' value. f can be defined for example as 
f(LossSj ) = 1/LossSj or f(LossSj ) = -log(LossSj ) or some other 
similar function. Now choose a function f, a ranking 
algorithm and a knowledge source integration rule for the 
calculation of the collective weights. With this and the 
previous considerations we can outline the skeleton of our 
decision factorization method (DF). 
 
1) Select l pairwise, distinct decision factor sets: S1,…,Sl. 
 
2) Run the ranking algorithm for all Sj employing its 
decision factors. 
 
3) Measure the ranking loss LossSj for all j and compute the 
performance values using the f function. 
 
4) Solve the following optimization problem  
 

 
         (4) 

 
 
Return ŵ, the weights of the decision factors. 
 
 
(In the 4th step instead of optimizing the least square error other 
error functions can also be applied.) 
 
     Different assumptions about the collective weight and f 
function lead to an optimization task that requires using 
different optimization methods. In this paper we employ 
the approach defined by the sum rule. In this case eq. (4) 
takes the following form in matrix notation: 

(5) 

 
where 
 

                                    (6) 
 

 
 
and F = (f(LossS1 ), …, f(LossSl ))T.  
 
The solution is : 
 
where A+ denotes the Moore & Penrose pseudo inverse [2, 
5], which always exists and can be readily computed. 
 

V. EXPERIMENTS 

In this section we first introduce three measure functions 
which we used for demonstrating the performance of the 
method. Then in Section B we give an account of the 

experiments that we performed on artificial data, while 
Section C contains our observations on real data. In the 
experiments Crammer and Singer's `PRank' algorithm [6] 
was used as a ranking algorithm and the function f was 
chosen to be -log(z). 

A. Measure functions 

Kendall's ττττ. This is used for comparing the ordinal 
correlation between two sequences of numbers [9, 8]. Thus 
we have to define the values C and D that τ applies:  

C is the number of concordant pairs, D is the 
number of discordant pairs, and an i,j pair is concordant if 
both sequences order it in the same way, and discordant 
otherwise. Then 
 

where the sum of C and D gives the number of all possible 
pairs, 2 over m, where m is the length of sequence, i.e. the 
number of decision factors used in this paper. Note that the 
totally equal order - the identity - indicates 1, random 
orders give about zero, while the reverse order is 
represented with a -1. 
 
The number of correct positions. This indicates that how 
many positions match the exact value. In this paper, how 
many factors have been ordered to the right position in the 
importance order.  
 
Consistency. Since we approximated the F performance 
vector by Aw (see eq. (5)), measuring the angle γ between 
F and Aw vectors can provide some useful information: 

 
 

 

B. Tests on Artificial data 

In order to investigate the performance of the DF method 
we carried out the following experiments. First, we 
generated 500 7-dimensional random vectors uniformly 
from the unit square [0; 1]7. These vectors form a 500 by 7 
matrix, which may be interpreted as 500 objects, each 
described with 7 features. Then we randomly generated 50 
preference-weights: these are feature-orders where the first 
place contains the most important feature, the second place 
the second most important factor, and so on. With these 
data sets we could generate the ranking-vectors (50 of 
them) that one would give with the preference-order we 
generated above. Then we added a normally distributed 
noise with a zero mean and a standard deviation of 0.125 to 
these ranking vectors. Generating ranking-vectors like 
these makes the calculation of Kendall's τ possible.  
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Table I. Results using artificial data. The rows correspond to 
Kendall's τ, the number of correct positions and consistency, while 
the columns correspond to 6 sets of decision factor subsets. Setk 
has k over 7 subsets, each containing k decision factor(s). Each k 
value in the table should be interpreted as an average of the 50 
values. 

 Set1 Set2 Set3 Set4 Set5 Set6 
τ value 0.47 0.60 0.74 0.78 0.76 0.74 
τ in % 73.5% 80% 87% 89.43% 88% 87% 

No of correct 
positions 

4.22 5.24 5.82 6.24 6.06 5.96 

in % 60% 74.86% 83% 89% 86.57% 85% 
consistency 

(cos (γ)) 
1 0.9998 0.9997 0.9996 0.9995 1 

 
 
      We know the output of the DF algorithm, and we also 
know the 'real` preference-orders since we defined them 
before. 
After doing these we formed 6 sets of feature-subsets 
(decision factors): Set1 contained 1 over 7, that is 7 subsets, 
each with one (distinct) features in it. Set2 contained 2 over 
7 that is 21 subsets, each subset with 2 features in it,…, Sk 

contained k over 7 subsets, each with k elements in it (1 ≤ k 
≤ 6). Then, after applying our DF method, we computed 
Kendall's τ, the number of correct positions and the 
consistency for each set of subsets. The results are given in 
Table 1.  
      In the Set1 and Set6 cases the consistency value was 1. 
This was because 1 over 7 = 6 over 7 = 7, the number of 
unknown values in Aw = F (cf. eq. (5)) and the number of 
equations are the same. In the other cases, when we had 
more equations than unknown values, the high value of γ 
indicated that the sum rule assumption on the collective 
weight led to a reliable and consistent result. The high 
values of τ and the number of correct positions also 
indicate the reliability of the method. Further, notice that 
the accuracy depends on the size of the feature subsets. As 
regards the τ values the method attains its maximum in the 
case of Set4. 

C. Tests on Real data 

With the aim of investigating the method on real data we 
made a list that contained one hundred kinds of sports, and 
valued all of them from nine points of view. (For example 
how spectacular, how tiring the given sport generally is, is 
it a ball-game, is it aquatic sport, etc.) In mathematical 
terms: we replaced each sport with a nine dimensional 
vector, where every element of the vector represented one 
of the nine features. Then we asked 60 people to rank all 
the sports from 1 to 10: 1 if he/she didn't like it at all, and 
10 if he/she was "enthusiastic" about it. We intentionally 
didn't let them know what we meant about "liking" a sport: 
we asked purely for the "individual sympathy". These 
ranking lists then provided the input data for the DF 
algorithm, which returned a first set of decision factor 
weights. Afterwards, we asked the same people to fill out 
an AHP pairwise comparison matrix as well: they were 
asked to compare the importance of the nine features while 
making a ranking decision.  

Table II. Test results on real data. The numbers indicate the 
average ranking loss. 

 PRank 
algorithm 

AHP method DF algorithm 

Average 
ranking loss 

 
2.8 

 
3.1 

 
2.1 

 
    These matrices - using an eigenanalysis - provided a 
second set of decision factor weights, those that could be 
obtained with the well known AHP methods. 
With values for these two kinds of weights we could 
generate two ranking-vectors. Then we compared them 
with the real ranks (given "in direct") using the ranking loss 
function. Furthermore, as a reference point we also 
compared the real rank values with the rank values 
provided directly by the 'PRank' ranking algorithm when all 
the features were used. (In this case for the computation of 
the ranking loss we only took into account the second 50 
ranking values and treated the first 50 as training data.)  
     As it can be seen in Table 2, the DF algorithm provided 
32% more proper ranking values than the weights obtained 
from the AHP matrices provided, and achieved a 25% 
better accuracy than the PRank algorithm in an immediate 
use. We also evaluated the AHP matrices based on another 
consistency definition ((n-λmax)/(n-1)), which is commonly 
used in AHP methodology, and obtained an average value 
0.096. Since this number indicates such a high consistency, 
we came to the conclusion that while people are quite 
consistent in comparing the decision factor pairs, they still 
cannot make their ranking decisions according to these 
factor weights. Overall these results correspond to the 
observation, frequently described by psychologists that 
while people think they know their own decision factor 
weights at least approximately, in real life they influenced 
by different weights. 

VI. CONCLUSIONS AND FUTURE WORK 

While AHP gives quite fair decision factor weights in 
conscious decisions, comparison matrices do not provide 
accurate information about less conscious decision factor 
weights. In spite of this, these decision factor preferences 
also can be attained from ranking information. Hence first 
of all we recommend the method be applied to cases when 
the required decision factor preferences are applied to less 
conscious decisions (see section I for motivations). The 
Decision Factorization (DF) method introduced in this 
paper first defines different sets of decision factors. Then it 
executes a ranking algorithm and computes the ranking loss 
on each of these sets. This step is followed by expressing a 
connection between the collective weights and ranking loss 
that are associated with the previous sets of decision 
factors. This leads to the optimization problem defined by 
eq. (4) which is then solved. Lastly, we are planning to test 
the performance of the method with different ranking 
algorithms and with other knowledge source integration 
rules as well. In another future experiment we also intend 
to check the DF method on web-based applications with 
dynamically changing databases such as online bookstores 
where customers can vote for the books they have read. 
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