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Abstract. The currently dominant speech recognition technology, hidden Mar-
kov modeling, has long been criticized for its simplistic assumptions abeetbp
and especially for the naive Bayes combination rule inherent in it. Mapliso
ticated alternative models have been suggested over the last decade, fibw-
ever, have demonstrated only modest improvements and brougharadigm
shift in technology. The goal of this paper is to examine why HMM perfosm
well in spite of its incorrect bias due to the naive Bayes assumption. Toislo th
we create an algorithmic framework that allows us to experiment with atteena
combination schemes and helps understand the factors that influeogaiten
performance. From the findings we argue that the bias peculiar to theBayes
rule is not really detrimental on phoneme classification performanaghétu
more, it ensures a consistent behavior in outlier modeling, allowing theeeiffi

management of insertion and deletion errors.

1 Introduction

Although speech recognition requires the fusion of sevefarmation sources, it is
rarely viewed as an expert combination problem. Such appesawere abandoned in
favor of the hidden Markov modeling techniqgue (HMM) (Huagtgal, 2001), which
treats speech as a stochastic process. The source of tlessaf¢iMM is that it offers

a sound mathematical framework along with efficient tragrand evaluation. The price



is that the simplistic mathematical assumptions of the rhdo@ot accord with the real

behavior of speech. One of these assumptions is the camaitiodependence of the
spectral vectors. Several alternative models have begroped to alleviate this flaw,
but these have brought only modest improvements at the tastansiderable increase
in complexity. Rather than seek to eliminate the incorreatleting bias, here we hope
to gain a better insight into why HMM performs so well in spifethe unrealistic naive

Bayes assumption.

The structure of the paper is as follows. First of all, we deéin algorithmic frame-
work that treats speech recognition as a classifier conibmatoblem. It will help us
to understand the recognition process from a classifier awatibn point of view, and
also allow us to experiment with alternative combinatiohesues. After this we show
that HMM is just a special case of our algorithm, obtained mvapplying the naive
Bayes rule. We also briefly present a family of alternativahitmlogies, the segmental
modeling framework. In Sections 4 and 6 we assess the proscmsdmentioned in the
literature regarding the use of naive Bayes in classifioatio Section 7 we show that
the recognition of speech requires an additional step, hyatine modeling of outliers,
and argue that naive Bayes surmounts this obstacle very kasitly, in Section 8 we
discuss experiments conducted on a small speech corpupgorsour assertions, and

then provide a summary of results in Section 9.

2 Speech Recognition as a Classifier Combination Problem

Although speech recognition is obviously a pattern classtifon task, the most suc-
cessful solution, hidden Markov modeling is not a clasdificaalgorithm in the strict
sense, but a generative model for stochastic random pex:€ERis is because speech
recognition does not fit the usual pattern classificatiom&aork. That is, most classi-
fication algorithms assume that the items to be classifiedlays represented by the

same number of features. In addition, both the dimensiohefdéature space and the



number of classes must be reasonably small. In contrasickpg a continuous stream
of acoustic information. Even if we assume that the talkestnstiop sometimes, the
possible utterances vary in length and their number is jgadlt unlimited. A possible

solution is to trace the problem back to the recognition efieg@roperly chosen build-
ing blocks. During recognition these building blocks hawdé found, identified, and
information they provide needs to be combined. This apgré@ams speech recognition

into a task of classifier combination integrated in a searobgss.

In the following we present a general speech decoding scirethe spirit of classi-
fier combination. Firstly, it makes it possible to experirmneith alternative combination
schemes which could not easily be done within the a traditibiMM framework. Sec-

ondly, it provides a more intuitive picture of how the whoézognition process works.

Algorithm 1shows the pseudocode of our generalized speech decodeesEgd
simply, the algorithm works in the following way. Let us assei that our building
blocks are denoted by the elements of the symbafsétet the speech signal be given
by the series of measuremems= ay, ..., ar. The goal of recognition is to map the
speech signall into a series of symbolg’ = f;...f,, wheref; € F. The algorithm
works from left to right, and stores its partial results inreopty cue. Having processed
the signal up to a certain pointthe algorithm looks ahead in time and, from the cor-
responding measurements, it collects evidence that thtespmbol belongs to the time
interval being inspected. As neither the exact length n@idantity of the next segment
is known, we examine every time indéx=t + 1, ¢ + 2, ... that might be the end point
of the segment. Each elemefbf the symbol set is matched to the intervalt, ¢’ >,
and from eactit’, f) pair a new hypothesis is formed and put in the hypothesisAsie.
every hypothesis has several extensions, this meansrgeasiearch tree. By adjusting
the hypothesis selection strategy, the pruning and thestgriteria one can control

how the search space is traversed and pruned.



When the whole signal has been processed, the best scorfrig teturned as the
result. The score of a hypothesis is calculated in two stépst, there is a function
(g1) to combine the evidences for each symbol as collected fhenacal information
sources. Second, this local evidence is combinedgy)iavith the prefix of the hypoth-

esis to obtain a global score. So, in effect, classifier coatin occurs at two levels.

Obviously, we obtain quite different decoders depending@m the measurements
a;, the symbol sefF and the functiong;, andg, are chosen. Researchers agree only
in that g; and g2 should work on probabilistic grounds. In this case Bayegigien
theorem guarantees optimal performance, and statistattdrp recognition provides

methods for approximating the probabilities from trainaugpora.

As regards the selection of the building units, the mostaealsle choice is the
phoneme since phonemes are the smallest information ogruyiits of speech (in the
sense that the insertion/deletion/substitution of a ph@nean turn a word into another
one). Furthermore, in many languages there is an almostomore correspondence
between phonemes and letters, so working with phonemesabaaus choice when
converting sound to writing. Nevertheless, smaller ordarnits could be used as well.
For example, there are arguments that syllables give a nuitabke representation of
(the English) language. Going the other way, current reizegs mostly decompose

phonemes into three articulation phases (Hueirgj., 2001).

The acoustic information sources display the greatest variation from system to
system. Traditionally the acoustic signdlis processed in small uniform-sized (20-
50 ms) chunks called "frames”, and the spectral repredentaf these serves as direct
input for the model. It has been observed, however, thagbetsults are obtained if this
representation is augmented with features of longer tipaas so the feature vectors in
current systems are a combination of the local and the neigid5-50 frames (Huang

etal, 2001).



Algorithm 1 A Generalized Speech Decoding Algorithm
solutions : =

hypothesis cue :&¢(t0,””,0)
/I a hypothesis consists of a time index, a phoneme string, and a score
while there is an extendible hypothesis
select an extendible hypothediEt, F, w) according to some strategy
if t =T then
if only the first solution is requirethen
return H
else
put H on the list of solutions
end if
end if
fortY =t+1,t+2,---do
forall f € Fdo
wy = g1(f, < t,t' >) Il whereg, estimates the cost of fittinfto < ¢, ¢’ >
/I based on the relevant measurements
w’ = ga(w,wy) I/ wheregs, is a proper aggregation function
if pruning-criterion{vy,w’) then
construct a new hypothesi#’ (¢, F'f,w') and put it in the hypothesis cue
end if
end for
if stopping-criterion& ¢,t' >) then
break
end if
end for

end while

3 A Special Case: Hidden Markov Models

In spite of its unusual appearand@dgorithm 1is not so different from the standard

technologies. In particular, its components can be chasémes it becomes mathemati-



cally equivalent to the left-to-right hidden Markov modpteferred in large-vocabulary
speech recognition. In this setup the set of states of the&kdwamodel will play the
role of the symbol set in our algorithm. Although the statéghnhsimply represent the
phonemes of the language, better results are normallyn#atdi the phonemes are de-
composed into three states, one corresponding to the nstielely-state part, and two
others describing the transitional phase before and after.

Instead of modeling the class posteriét&F'| A) directly, in speech recognition the
productP(A|F)P(F) is normally modelled instead, which leads to the same résiilt
allows one to separate the pridP§ F'). Building words from states and assessing their
prior probability is the problem of language modeling. Here assume thaP(F) is
readily given, and deal only with the acoustic componB(#|F). This factor will be
estimated by HMM in the way described befow

During operation the HMM goes through a sequence of statsitrans. This deter-
mines a segmentation based on how long the model stayed we@ sfiate. The prob-
ability corresponding to a given segmentation is calcdla® follows. The probability

corresponding to a given segmefit=< t, ¢ > and statef is calculated as
tl

P(<t,t' > 1) =18 - T] Pailf). (1)

i=t

wherel; is a constant between 0 and 1.
The probability corresponding to the whole segmentatiabtained by multiplying

the segmental probabilities:
P(A,S|F) = [ P(Silf)- (2)
=1

In terms of our model, Eg. (1) correspondsgiowhile Eq. (2) corresponds tg. This
means thay, is simply a multiplication, whileg; consists of two factors. The term
! Note that we slightly deviate from the standard decomposition into languatj@aoustic
models as, in our notation, the state transitions between the states of a multicstastic
model are also included in the language factor, while only the self-transitiba state are

included in the acoustic model.



lffl_t) is an exponentially decaying duration model. The proqt{(;/;t P(a;|f) is a
spectral factor that renders a state-conditional likelthfor each measurement of the
segment, and then combines these by multiplication — thdtyisapplying the naive
Bayes assumption. This factor is the focus of the paper, swill@ow examine it in

more detail.

4 Naive Bayes: The Cons

The hidden Markov technique is a general mathematical frariefor modeling sto-
chastic sequences. Its main power is its mathematicabtvdity — that it can be eval-
uated very quickly by dynamic programming, and that itsglyg optimal parameters
can be found relatively simply (Huaret al, 2001). However, whether these optimal
parameters provide a good performance also depends on hibwhevenodeling as-
sumptions fit the given application. HMM has a very seriouittive bias as it assumes
the state-conditional independence of the acoustic v&dioicontrast, the neighboring
frames are obviously correlated as speech is produced hytmaous movement of the
articulators. Moreover, many signal processing methogdiegpin the feature extrac-
tion step increase the correlation as they linearly comthisaeighboring data vectors.
As a coup de dice, we extend out feature set with the so-called deltarestwhich
are again obtained as a combination of a few neighboringdsafiduancet al, 2001).

Based on speech perception experiments, we can also argirestagombination
by multiplication. Namely, it is known that humans can reuiag speech quite well
even when large portions of the spectral information areoresd. In comparison, the
production combination rule is too restrictive in the setieg any frame can 'veto’ the
classification by making the product zero.

As a final argument, classifier combination literature sstgyéhat in general the
production rule performs well when the classifiers work atejpendent features. When

the features contain similar information — as in our caseen tbhther schemes like



combination by averaging are likely to yield better classifion results (Tavet al.,

2000).

5 An Alternative Technology: Segmental Models

The contradiction between the model that assumes indepeadmd the feature ex-
traction method that makes it patently false has been utwelsind criticized by many
authors (Horn, 2001; Ostendasf al,, 1996). Several cures were suggested, some only
patching the original HMM algorithm, some totally abanduapit. The family of seg-
mental models (Ostendoet al, 1996) recommends modeling phonemes 'in one’, in-
stead of estimating their probabilities by multiplying thame-based scores. In our
framework this means that; (Eq. (1)) is replaced by some more sophisticated ap-
proximatiorf. One possibility might be to create special models thatef@mple, fit
parametric curves on the feature trajectories (Osteretaf, 1996; Holmes and Rus-
sel, 1999). Another option is to convert the variable-langggmental data into a fixed
number of segmental features (Clarkson and Moreno, 1998s(GH96; Tothet al,,
2000). What makes the latter tempting is that this way all thedard classification

algorithms become applicable to the phoneme classifictaign

Whatever technique we choose, the results are similar. bgdkithe literature we
find that these models result in a 10-30% reduction in the ehmnclassification error
compared to HMM (see e.g. (Clarkson and Moreno, 1999) andhfel and Russel,
1999)). Although this is significant, it is rather modestsidiering that have we replaced

an incorrectly biased model with a much better one.

2n contrast tog:;, combination by multiplication at the level @k seems quite reasonable
because the presence of all phonemes is required for the identity ofda Wus makes an

AND-like combination logical.



6 Naive Bayes: The Pros

Many have critized the use of naive Bayes assumption in HMM.vi& are unaware of
anyone in the speech community putting the question the ethg round: why does it
work so remarkably well when, in theory, it should not? Fodtely, we can find partial
answers in the machine learning literature. Most pertiggibhhas been pointed out that
in many cases naive Bayes provides optimal classificatiem ¢évough it incorrectly
estimates the probabilities (Domingos and Pazzani, 19979.such case is when there
is full functional dependency among the features (Riskal, 2001). Even when the
dependency is not completely deterministic, naive Bayassification was found to
perform nearly optimally in (Riskt al., 2001). The explanation is that in these cases all
features yield approximately the same probability est®ato when we combine them
by multiplication it is like raising one output to the numbr classifiers combined.
The resulting estimation tends to underestimate the redlghilities. Besides this, the
probability value of the winning class dominates over tHahe others. Quoting Hand,
“the model will have a tendency to be too confident in its pedins and will tend to
produce modes at the extremes 0 and 1” (Hand and Yu, 2001)et#owhese values
lead to the same classification as raising the estimates tovarpand preserves rank

order.

Knowing that the feature vectors in speech recognition @b correlated, we
might suspect that a similar effect must occur with HMMs.dslindeed been reported
that HMMs are “overconfident of their recognition resultslofn, 2001), and that “pri-
marily due to invalid modelling assumptions, the HMM undgireates the probability
of acoustic vector sequences” (Woodland and Povey, 19845 sTipports our argument
and taken together may explain why HMMs perform well in phoeeclassification in

spite of the manifestly false independence assumption.



7 From Classification to Recognition

Thus far we seem to have overlooked that, as part of the rgemysystem, the role
of phoneme models is not classification, but rather protiglestimation! At first sight
this seems to invalidate all our arguments for naive Bayeskimg the explanation of
its efficient classification irrelevant. In the following vege going to argue that during
recognition the phoneme classification task is simply edeenwith outlier modeling,
and the bias of naive Bayes is not harmful on the latter stibeei

First of all, let us clarify what happens when we move fronssification to recog-
nition. During classification we assume that the start amtipaints of the phonemes —
that is, the correct segmentation of the signal —was knowns€quently, the only task
was to identify the segments. During recognition, howetle, proper segmentation
also has to be found. This requires discriminating real pho segments from fake
ones. Note that we neither have a model dedicated to thesphmremic segments
nor training examples for them. This means that we are faéddam outlier modeling
problem. If our phoneme model is not able to reject thesaearatlit will then be prone
to commit insertion and deletion errors. That is, it is goiogcut the phonemes into
more segments or fuse the frames of a segment with neiglthsegments.

Let us now examine how the hidden Markov model behaves whieraltowed to
evaluate all state sequences and segmentations. Obyithesiyodel gives the highest
value if the signal is cut into 1-frame long segments, andittheof these the state with
the highest likelihood is selected. This is avoided by timglege model that punishes
unlikely state transitions and/or excludes impossiblesotrethis way we can force the
model to fuse neighboring frames, but even in this case ithaite a strong preference
for short segments. This is because the frame-based liciare very small (non-
negative) values, so when we multiply them we will get pregieely smaller values for
progressively longer segments. Another factor is, of cautse exponentially decaying

duration component. However, because the spectral l@dik are usually many orders



of magnitudes smaller thaly, it has been reported by many researchers that it has
virtually no effect on recognition performance. This medmat it is practically the

naive Bayes combination rule that drives the system towsitdgt segments.

When forced to fuse neighboring frames, the model will préfese subsegments
in which one of the states provides consistently high valliés fulfilled if the system
performs reasonably well at the frame level. It is also kndkat the frame-level clas-
sification tends to be more stable in the middle of the segsremd more inconsistent
at the segment boundaries. This will ‘push’ the model towduding the central parts

of the phonemes and position the state transitions neae#tsegment boundaries.

8 Experiments

To justify our conclusions we conducted experiments to sss#®e influence of naive
Bayes both on classification and recognition performangethts purpose we replaced
the naive Bayes product rule with alternative combinatiommiulas. Comparing these
results gave an indication of how beneficial or detrimensa@ Bayes is on classifica-

tion and on outlier modeling.

In the experiments the "Oasis-Numbers” speech corpus wesk its data was col-
lected at our institute and consists of spoken numbersraedowith several types of
microphones at a sampling rate of 22050 Hz in 16-bit qualitye whole corpus is
manually segmented and labeled at the phoneme level. Alteg29 different phone-
mic labels occur in the transcripts. 2185 and 1247 uttean@¥e randomly selected
for training and testing purposes, respectively.

For feature extraction we utilized the HCopy routine of th€kHtoolkit (Young
et al, 2004). We extracted 13 MFCC coefficients from each framengwith their
first and second derivatives. This feature set is the mostlwidsed one in speech

recognition (Huangt al,, 2001).



Modeling whole segments in one requires an additional Step.variable-length
frame-based representation has to be converted into a direeisional feature set.
To achieve this we used the simple method proposed in the SITMlystem (Galss,
1996), but also successfully applied by us (Tettal,, 2000) and others (Clarkson and
Moreno, 1999). The segments were divided into three paoisgathe time axis, and
each frame-based feature was averaged over these thirdisiofdlly, the length of the

segment was also included in the segmental feature set.

For modeling the frame-level and segmental likelihoods SS&un mixtures were
applied, which is again a standard technology in speechgretion. The model pa-
rameters were initialized by K-means clustering and thingh Expectation Maxi-
mization. 15 Gaussian components performed the best irdheetlevel and 10 in the

segmental modeling task. In both cases the covarianceamatriere kept diagonal.

Classification In the classification experiments we utilized the manuahsagation
information of the database. This means that the searctopauntr decoding algorithm
was deactivated by restricting the decoder to evaluatetbelgorrect segmentation. All

phoneme priors were assigned equal values in these expdsime

The percentage of correctly classified segments is showreifirst column of Ta-
ble 1. Besides the segmental representation and the oneattndiines the frame-level
likelihoods by multiplication, out of curiosity we alsodéd combination by averaging.
Furthermore, we tested two further possibilities. The firs¢ was to compensate for
the bias of the product rule by taking théh root of its likelihood estimations, where
is the number of frame-based scores multiplied (as sugdegtéHand and Yu, 2001)).
The other idea was to introduce a similar bias into the setahemodel by raising its
estimates to theth power. These manipulations clearly do not influence @flaason.
However, they result in quite different likelihood estitaais that may seriously affect

the search process.



We have to emphasize that our goal here was not to achievepeigbrmance clas-
sification but to compare the two approaches. The produet cambination of the
frame-based likelihoods corresponds to a 1-state hiddetdvanodel, which could
be outperformed by the usual 3-state representation. Tdreesgal model could also
be improved by adding further features. The results negbz#ls reflect quite well the
usual findings when comparing segmental models with HMMa, igithe modest su-
periority of the segmental representation.

We did not mention that the frame-based Gaussian models ai#eeto classify
71.54% of the frames correctly. The product rule broughssasitial improvement com-
pared to this, while averaging outperformed it only modesgtipossible explanation it
that when a frame is classified correctly, the likelihood lué torrect class is much
higher than those of the competing ones. And if a frame islagsdied, the likelihood
of the correct class is still relatively high. As a conseqeerthe product rule does not
get fooled by the erroneous frames, but the dominance ofathreat ones tilts the prod-
uct in the right direction. Averaging profits less from thglthiconfidence of the correct

decisions, and so is more vulnerable to the incorrect ones.

Recognition In the recognition experiments the algorithm was alloweca\aluate
every possible segmentation. The segmental probabilitere calculated exactly as
described in the previous section, but now as a part of théendearch process.

As regards language modeling — that is, the prior probasliof phoneme se-
quences — two extreme cases were tried. In one case evergiphoras allowed to
follow a phoneme, and with equal probability. This could ladled a 'unigram’ lan-
guage model. In the other case the possible phoneme seguerce restricted to a
26-word vocabulary, each word being equally probable. Toisesponds to a very
small vocabulary isolated word recognition task.

The scores reported when using the dictionary are simplyp#neentage of words

recognized correctly. In the case of the unigram model, kewéhe result of recogni-



tion is a phoneme sequence that, besides misclassificatansontain insertion and
deletion errors as well. The standard evaluation method imdtch the result to the
manual phonemic transcription by calculating their edstalice (Younget al,, 2004).

Having obtained the best match, all three types of error anated and included in the

accuracy score.

When testing the product rule with the unigram model we fotmadl+ in accordance
with our expectations — insertion errors tended to overmhttle result. We compen-
sated for this by raising the language model probabilitiest empirically tuned factor.
Following (Lee and Hon, 1989), this factor was adjusted abttie insertion errors went
down to about 10% of the number of test instances. A similaglage model compen-
sation was applied in every case when insertion or deletimorebecame seriously

unbalanced.

The results are listed in the last two columns of Table 2. Thetimportant finding
is that the frame-based model with the product rule perfarthe best with both lan-
guage models, and the segmental model could not even cose €lais shows that bet-
ter phoneme classification does not automatically warrattebrecognition. Because
the segmental model is not designed to refuse outliers, mes@@l recognizer needs
a further component to handle them. Although with such meatibns the segmental
technology may outperform HMM, this means a further aldmnilc and computational

burden compared to HMM that "automagically’ handles thisijbem.

A further observation was that the product rule displayedrg eonsistent behavior
regarding insertion and deletion errors. This means thatdjysting the weight of the
language model we could easily tune the ratio of insertiorts deletions in the Un-
igram experiments. In comparison, with the averaging rutewere unable to obtain
reasonable results because certain phonemes tended tgp’e¢heir neighbors, while
some others were cut into lots of small segments. The seginewatdel displayed a

quite similar rhapsodic behavior, although to a lessemgxBesides insufficient outlier



Classificatiov“ Recognition Acc.
Phoneme Model Accuracy || Unigram| Vocabulary
Frame-based, product rule 92.33% 82.05% | 96.87%
Frame-based, sum rule 78.04% — 86.28%
Frame-based, product ruleth root|| 92.33% — 41.78%
Segmental 94.58% 46.25% | 87.00%
Segmentalpth power 94.58% 57.99% | 88.29%

Table 1. Classification and recognition accuracies

modeling, weak duration modeling may also contribute ts.tAlthough the segmental
duration was among the features and, in theory, the modeheeabtion of making use
of it, we noticed that the model still allowed ridiculoustynlg or short segments.

As regards the compensation experiment, takingieroot had a fatal result on
recognition, leading to the chaotic behavior just mentibridowever, we have prob-
ably overcompensated for the bias of the product rule, sceXperiment where we
introduced a similar bias into the segmental model mightXpeeted to yield more
conclusive results. In showed that raising to a power dicdcaase any harm. Actually,
it led to a slight improvement. It indicates that an incotrgias that severely punishes
long segments performs better in finding the correct segatientthan a model that has
no idea of fake segments and is not really good at duratioretimagdanyway.

Finally, we should also mention that segmental models areerpoone to vari-
ance problems due to insufficient data, as of course thermany more frames than

phonemes. This may also contribute to the instability ofstegmental system.

9 Conclusions

This paper sought to gain an insight into why HMM speech racaags, built on the

naive Bayes assumption, perform so well. We argued thaichpeeognition consists



of two subtasks, phoneme classification and outlier modgeénd that the naive Bayes
rule does well in both tasks. A small set of experiments wss earried out where we
compared the product rule with a segmental representatierfound that the segmen-
tal model performed only slightly better in classificatiordain spite of acting better as
a classifier, provided much worse recognition. Overall ghisws that the simple prod-
uct rule, although suboptimal, warrants stable and redibhavior along with a decent
recognition performance. In comparison, segmental rezegnhave to take more care
of outliers. Although the phoneme models themselves cdatdlze improved to refuse
fake segments, it is probably more effective to model theplieidly. This can be done
by introducing an 'anti-phoneme’ model (Galss, 1996; Tetlal, 2000) or by assess-
ing probabilities for the different segmentations and mpooating this factor into the
formulas (Verhassedtt al.,, 1998).

In spite of these difficulties, we believe that segmentatesentation, and our gen-
eralized decoding framework in particular, both offer aifddity necessary for solving
the current outstanding problems of robust and reliabledpeecognition. Hence we

plan to conduct further research into varying the compaehbur decoding scheme.
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