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Lászĺo Tóth,1 András Kocsor2

Research Group on Artificial Intelligence

H-6720 Szeged, Aradi vértańuk tere 1., Hungary
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Abstract. The currently dominant speech recognition technology, hidden Mar-

kov modeling, has long been criticized for its simplistic assumptions about speech,

and especially for the naive Bayes combination rule inherent in it. Many sophis-

ticated alternative models have been suggested over the last decade. These, how-

ever, have demonstrated only modest improvements and brought no paradigm

shift in technology. The goal of this paper is to examine why HMM performs so

well in spite of its incorrect bias due to the naive Bayes assumption. To do this

we create an algorithmic framework that allows us to experiment with alternative

combination schemes and helps understand the factors that influence recognition

performance. From the findings we argue that the bias peculiar to the naive Bayes

rule is not really detrimental on phoneme classification performance. Further-

more, it ensures a consistent behavior in outlier modeling, allowing the efficient

management of insertion and deletion errors.

1 Introduction

Although speech recognition requires the fusion of severalinformation sources, it is

rarely viewed as an expert combination problem. Such approaches were abandoned in

favor of the hidden Markov modeling technique (HMM) (Huanget al., 2001), which

treats speech as a stochastic process. The source of the success of HMM is that it offers

a sound mathematical framework along with efficient training and evaluation. The price



is that the simplistic mathematical assumptions of the model do not accord with the real

behavior of speech. One of these assumptions is the conditional independence of the

spectral vectors. Several alternative models have been proposed to alleviate this flaw,

but these have brought only modest improvements at the cost of a considerable increase

in complexity. Rather than seek to eliminate the incorrect modeling bias, here we hope

to gain a better insight into why HMM performs so well in spiteof the unrealistic naive

Bayes assumption.

The structure of the paper is as follows. First of all, we define an algorithmic frame-

work that treats speech recognition as a classifier combination problem. It will help us

to understand the recognition process from a classifier combination point of view, and

also allow us to experiment with alternative combination schemes. After this we show

that HMM is just a special case of our algorithm, obtained when applying the naive

Bayes rule. We also briefly present a family of alternative technologies, the segmental

modeling framework. In Sections 4 and 6 we assess the pros andcons mentioned in the

literature regarding the use of naive Bayes in classification. In Section 7 we show that

the recognition of speech requires an additional step, namely the modeling of outliers,

and argue that naive Bayes surmounts this obstacle very well. Lastly, in Section 8 we

discuss experiments conducted on a small speech corpus to support our assertions, and

then provide a summary of results in Section 9.

2 Speech Recognition as a Classifier Combination Problem

Although speech recognition is obviously a pattern classification task, the most suc-

cessful solution, hidden Markov modeling is not a classification algorithm in the strict

sense, but a generative model for stochastic random processes. This is because speech

recognition does not fit the usual pattern classification framework. That is, most classi-

fication algorithms assume that the items to be classified arealways represented by the

same number of features. In addition, both the dimension of the feature space and the



number of classes must be reasonably small. In contrast, speech is a continuous stream

of acoustic information. Even if we assume that the talker must stop sometimes, the

possible utterances vary in length and their number is practically unlimited. A possible

solution is to trace the problem back to the recognition of some properly chosen build-

ing blocks. During recognition these building blocks have to be found, identified, and

information they provide needs to be combined. This approach turns speech recognition

into a task of classifier combination integrated in a search process.

In the following we present a general speech decoding schemein the spirit of classi-

fier combination. Firstly, it makes it possible to experiment with alternative combination

schemes which could not easily be done within the a traditional HMM framework. Sec-

ondly, it provides a more intuitive picture of how the whole recognition process works.

Algorithm 1shows the pseudocode of our generalized speech decoder. Expressed

simply, the algorithm works in the following way. Let us assume that our building

blocks are denoted by the elements of the symbol setF . Let the speech signal be given

by the series of measurementsA = a1, ..., aT . The goal of recognition is to map the

speech signalA into a series of symbolsF = f1...fn, wherefj ∈ F . The algorithm

works from left to right, and stores its partial results in a priority cue. Having processed

the signal up to a certain pointt, the algorithm looks ahead in time and, from the cor-

responding measurements, it collects evidence that the next symbol belongs to the time

interval being inspected. As neither the exact length nor the identity of the next segment

is known, we examine every time indext′ = t + 1, t + 2, ... that might be the end point

of the segment. Each elementf of the symbol set is matched to the interval< t, t′ >,

and from each(t′, f) pair a new hypothesis is formed and put in the hypothesis cue.As

every hypothesis has several extensions, this means creating a search tree. By adjusting

the hypothesis selection strategy, the pruning and the stopping criteria one can control

how the search space is traversed and pruned.



When the whole signal has been processed, the best scoring leaf is returned as the

result. The score of a hypothesis is calculated in two steps.First, there is a function

(g1) to combine the evidences for each symbol as collected from the local information

sources. Second, this local evidence is combined (viag2) with the prefix of the hypoth-

esis to obtain a global score. So, in effect, classifier combination occurs at two levels.

Obviously, we obtain quite different decoders depending onhow the measurements

ai, the symbol setF and the functionsg1 andg2 are chosen. Researchers agree only

in that g1 andg2 should work on probabilistic grounds. In this case Bayes’ decision

theorem guarantees optimal performance, and statistical pattern recognition provides

methods for approximating the probabilities from trainingcorpora.

As regards the selection of the building units, the most reasonable choice is the

phoneme since phonemes are the smallest information carrying units of speech (in the

sense that the insertion/deletion/substitution of a phoneme can turn a word into another

one). Furthermore, in many languages there is an almost one-to-one correspondence

between phonemes and letters, so working with phonemes is anobvious choice when

converting sound to writing. Nevertheless, smaller or larger units could be used as well.

For example, there are arguments that syllables give a more suitable representation of

(the English) language. Going the other way, current recognizers mostly decompose

phonemes into three articulation phases (Huanget al., 2001).

The acoustic information sourcesai display the greatest variation from system to

system. Traditionally the acoustic signalA is processed in small uniform-sized (20-

50 ms) chunks called ”frames”, and the spectral representation of these serves as direct

input for the model. It has been observed, however, that better results are obtained if this

representation is augmented with features of longer time-spans so the feature vectors in

current systems are a combination of the local and the neighboring 5-50 frames (Huang

et al., 2001).



Algorithm 1 A Generalized Speech Decoding Algorithm
solutions :=∅

hypothesis cue :=h0(t0, ””, 0)

// a hypothesis consists of a time index, a phoneme string, and a score

while there is an extendible hypothesisdo

select an extendible hypothesisH(t, F, w) according to some strategy

if t = T then

if only the first solution is requiredthen

returnH

else

putH on the list of solutions

end if

end if

for t′ = t + 1, t + 2, · · · do

for all f ∈ F do

wf := g1(f, < t, t′ >) // whereg1 estimates the cost of fittingf to < t, t′ >

// based on the relevantai measurements

w′ := g2(w, wf ) // whereg2 is a proper aggregation function

if pruning-criterion(wf , w′) then

construct a new hypothesisH ′(t′, Ff, w′) and put it in the hypothesis cue

end if

end for

if stopping-criterion(< t, t′ >) then

break

end if

end for

end while

3 A Special Case: Hidden Markov Models

In spite of its unusual appearance,Algorithm 1 is not so different from the standard

technologies. In particular, its components can be chosen so that it becomes mathemati-



cally equivalent to the left-to-right hidden Markov modelspreferred in large-vocabulary

speech recognition. In this setup the set of states of the Markov model will play the

role of the symbol set in our algorithm. Although the states might simply represent the

phonemes of the language, better results are normally obtained if the phonemes are de-

composed into three states, one corresponding to the middlesteady-state part, and two

others describing the transitional phase before and after.

Instead of modeling the class posteriorsP (F |A) directly, in speech recognition the

productP (A|F )P (F ) is normally modelled instead, which leads to the same resultbut

allows one to separate the priorsP (F ). Building words from states and assessing their

prior probability is the problem of language modeling. Herewe assume thatP (F ) is

readily given, and deal only with the acoustic componentP (A|F ). This factor will be

estimated by HMM in the way described below1.

During operation the HMM goes through a sequence of state transitions. This deter-

mines a segmentation based on how long the model stayed in a given state. The prob-

ability corresponding to a given segmentation is calculated as follows. The probability

corresponding to a given segmentSi =< t, t′ > and statef is calculated as

P (< t, t′ > |f) = l
(t′−t)
f ·

t′∏

i=t

P (ai|f), (1)

wherelf is a constant between 0 and 1.

The probability corresponding to the whole segmentation isobtained by multiplying

the segmental probabilities:

P (A,S|F ) =

n∏

i=1

P (Si|fi). (2)

In terms of our model, Eq. (1) corresponds tog1 while Eq. (2) corresponds tog2. This

means thatg2 is simply a multiplication, whileg1 consists of two factors. The term
1 Note that we slightly deviate from the standard decomposition into language and acoustic

models as, in our notation, the state transitions between the states of a multi-stateacoustic

model are also included in the language factor, while only the self-transitions of a state are

included in the acoustic model.



l
(t′−t)
f is an exponentially decaying duration model. The product

∏t′

i=t P (ai|f) is a

spectral factor that renders a state-conditional likelihood for each measurement of the

segment, and then combines these by multiplication – that is, by applying the naive

Bayes assumption. This factor is the focus of the paper, so wewill now examine it in

more detail.

4 Naive Bayes: The Cons

The hidden Markov technique is a general mathematical framework for modeling sto-

chastic sequences. Its main power is its mathematical tractability – that it can be eval-

uated very quickly by dynamic programming, and that its (locally) optimal parameters

can be found relatively simply (Huanget al., 2001). However, whether these optimal

parameters provide a good performance also depends on how well the modeling as-

sumptions fit the given application. HMM has a very serious inductive bias as it assumes

the state-conditional independence of the acoustic vectors. In contrast, the neighboring

frames are obviously correlated as speech is produced by a continuous movement of the

articulators. Moreover, many signal processing methods applied in the feature extrac-

tion step increase the correlation as they linearly combinethe neighboring data vectors.

As a coup de gr̂ace, we extend out feature set with the so-called delta features, which

are again obtained as a combination of a few neighboring frames (Huanget al., 2001).

Based on speech perception experiments, we can also argue against combination

by multiplication. Namely, it is known that humans can recognize speech quite well

even when large portions of the spectral information are removed. In comparison, the

production combination rule is too restrictive in the sensethat any frame can ’veto’ the

classification by making the product zero.

As a final argument, classifier combination literature suggests that in general the

production rule performs well when the classifiers work on independent features. When

the features contain similar information – as in our case – then other schemes like



combination by averaging are likely to yield better classification results (Taxet al.,

2000).

5 An Alternative Technology: Segmental Models

The contradiction between the model that assumes independence and the feature ex-

traction method that makes it patently false has been understood and criticized by many

authors (Horn, 2001; Ostendorfet al., 1996). Several cures were suggested, some only

patching the original HMM algorithm, some totally abandoning it. The family of seg-

mental models (Ostendorfet al., 1996) recommends modeling phonemes ’in one’, in-

stead of estimating their probabilities by multiplying theframe-based scores. In our

framework this means thatg1 (Eq. (1)) is replaced by some more sophisticated ap-

proximation2. One possibility might be to create special models that, forexample, fit

parametric curves on the feature trajectories (Ostendorfet al., 1996; Holmes and Rus-

sel, 1999). Another option is to convert the variable-length segmental data into a fixed

number of segmental features (Clarkson and Moreno, 1999; Galss, 1996; Tothet al.,

2000). What makes the latter tempting is that this way all the standard classification

algorithms become applicable to the phoneme classificationtask.

Whatever technique we choose, the results are similar. Looking in the literature we

find that these models result in a 10-30% reduction in the phoneme classification error

compared to HMM (see e.g. (Clarkson and Moreno, 1999) and (Holmes and Russel,

1999)). Although this is significant, it is rather modest considering that have we replaced

an incorrectly biased model with a much better one.

2 In contrast tog1, combination by multiplication at the level ofg2 seems quite reasonable

because the presence of all phonemes is required for the identity of a word. This makes an

AND-like combination logical.



6 Naive Bayes: The Pros

Many have critized the use of naive Bayes assumption in HMM. But we are unaware of

anyone in the speech community putting the question the other way round: why does it

work so remarkably well when, in theory, it should not? Fortunately, we can find partial

answers in the machine learning literature. Most pertinently, it has been pointed out that

in many cases naive Bayes provides optimal classification even though it incorrectly

estimates the probabilities (Domingos and Pazzani, 1997).One such case is when there

is full functional dependency among the features (Rishet al., 2001). Even when the

dependency is not completely deterministic, naive Bayes classification was found to

perform nearly optimally in (Rishet al., 2001). The explanation is that in these cases all

features yield approximately the same probability estimates, so when we combine them

by multiplication it is like raising one output to the numberof classifiers combined.

The resulting estimation tends to underestimate the real probabilities. Besides this, the

probability value of the winning class dominates over that of the others. Quoting Hand,

“the model will have a tendency to be too confident in its predictions and will tend to

produce modes at the extremes 0 and 1” (Hand and Yu, 2001). However, these values

lead to the same classification as raising the estimates to a power and preserves rank

order.

Knowing that the feature vectors in speech recognition are highly correlated, we

might suspect that a similar effect must occur with HMMs. It has indeed been reported

that HMMs are “overconfident of their recognition results” (Horn, 2001), and that “pri-

marily due to invalid modelling assumptions, the HMM underestimates the probability

of acoustic vector sequences” (Woodland and Povey, 1934). This supports our argument

and taken together may explain why HMMs perform well in phoneme classification in

spite of the manifestly false independence assumption.



7 From Classification to Recognition

Thus far we seem to have overlooked that, as part of the recognition system, the role

of phoneme models is not classification, but rather probability estimation! At first sight

this seems to invalidate all our arguments for naive Bayes, making the explanation of

its efficient classification irrelevant. In the following weare going to argue that during

recognition the phoneme classification task is simply extended with outlier modeling,

and the bias of naive Bayes is not harmful on the latter step either.

First of all, let us clarify what happens when we move from classification to recog-

nition. During classification we assume that the start and end points of the phonemes –

that is, the correct segmentation of the signal – was known. Consequently, the only task

was to identify the segments. During recognition, however,the proper segmentation

also has to be found. This requires discriminating real phoneme segments from fake

ones. Note that we neither have a model dedicated to these non-phonemic segments

nor training examples for them. This means that we are faced with an outlier modeling

problem. If our phoneme model is not able to reject these outliers, it will then be prone

to commit insertion and deletion errors. That is, it is goingto cut the phonemes into

more segments or fuse the frames of a segment with neighboring segments.

Let us now examine how the hidden Markov model behaves when itis allowed to

evaluate all state sequences and segmentations. Obviously, the model gives the highest

value if the signal is cut into 1-frame long segments, and to each of these the state with

the highest likelihood is selected. This is avoided by the language model that punishes

unlikely state transitions and/or excludes impossible ones. In this way we can force the

model to fuse neighboring frames, but even in this case it will have a strong preference

for short segments. This is because the frame-based likelihoods are very small (non-

negative) values, so when we multiply them we will get progressively smaller values for

progressively longer segments. Another factor is, of course, the exponentially decaying

duration component. However, because the spectral likelihoods are usually many orders



of magnitudes smaller thanlf , it has been reported by many researchers that it has

virtually no effect on recognition performance. This meansthat it is practically the

naive Bayes combination rule that drives the system towardsshort segments.

When forced to fuse neighboring frames, the model will preferthose subsegments

in which one of the states provides consistently high values. It is fulfilled if the system

performs reasonably well at the frame level. It is also knownthat the frame-level clas-

sification tends to be more stable in the middle of the segments and more inconsistent

at the segment boundaries. This will ’push’ the model towards fusing the central parts

of the phonemes and position the state transitions near the real segment boundaries.

8 Experiments

To justify our conclusions we conducted experiments to assess the influence of naive

Bayes both on classification and recognition performance. For this purpose we replaced

the naive Bayes product rule with alternative combination formulas. Comparing these

results gave an indication of how beneficial or detrimental naive Bayes is on classifica-

tion and on outlier modeling.

In the experiments the ”Oasis-Numbers” speech corpus was used. Its data was col-

lected at our institute and consists of spoken numbers, recorded with several types of

microphones at a sampling rate of 22050 Hz in 16-bit quality.The whole corpus is

manually segmented and labeled at the phoneme level. Altogether 29 different phone-

mic labels occur in the transcripts. 2185 and 1247 utterances were randomly selected

for training and testing purposes, respectively.

For feature extraction we utilized the HCopy routine of the HTK toolkit (Young

et al., 2004). We extracted 13 MFCC coefficients from each frame, along with their

first and second derivatives. This feature set is the most widely used one in speech

recognition (Huanget al., 2001).



Modeling whole segments in one requires an additional step.The variable-length

frame-based representation has to be converted into a fixed-dimensional feature set.

To achieve this we used the simple method proposed in the SUMMIT system (Galss,

1996), but also successfully applied by us (Tothet al., 2000) and others (Clarkson and

Moreno, 1999). The segments were divided into three parts along the time axis, and

each frame-based feature was averaged over these thirds. Additionally, the length of the

segment was also included in the segmental feature set.

For modeling the frame-level and segmental likelihoods Gaussian mixtures were

applied, which is again a standard technology in speech recognition. The model pa-

rameters were initialized by K-means clustering and trained with Expectation Maxi-

mization. 15 Gaussian components performed the best in the frame-level and 10 in the

segmental modeling task. In both cases the covariance matrices were kept diagonal.

Classification In the classification experiments we utilized the manual segmentation

information of the database. This means that the search partof our decoding algorithm

was deactivated by restricting the decoder to evaluate onlythe correct segmentation. All

phoneme priors were assigned equal values in these experiments.

The percentage of correctly classified segments is shown in the first column of Ta-

ble 1. Besides the segmental representation and the one thatcombines the frame-level

likelihoods by multiplication, out of curiosity we also tried combination by averaging.

Furthermore, we tested two further possibilities. The firstone was to compensate for

the bias of the product rule by taking thenth root of its likelihood estimations, wheren

is the number of frame-based scores multiplied (as suggested by (Hand and Yu, 2001)).

The other idea was to introduce a similar bias into the segmental model by raising its

estimates to thenth power. These manipulations clearly do not influence classification.

However, they result in quite different likelihood estimations that may seriously affect

the search process.



We have to emphasize that our goal here was not to achieve high-performance clas-

sification but to compare the two approaches. The product rule combination of the

frame-based likelihoods corresponds to a 1-state hidden Markov model, which could

be outperformed by the usual 3-state representation. The segmental model could also

be improved by adding further features. The results nevertheless reflect quite well the

usual findings when comparing segmental models with HMMs, that is the modest su-

periority of the segmental representation.

We did not mention that the frame-based Gaussian models wereable to classify

71.54% of the frames correctly. The product rule brought substantial improvement com-

pared to this, while averaging outperformed it only modestly. A possible explanation it

that when a frame is classified correctly, the likelihood of the correct class is much

higher than those of the competing ones. And if a frame is misclassified, the likelihood

of the correct class is still relatively high. As a consequence, the product rule does not

get fooled by the erroneous frames, but the dominance of the correct ones tilts the prod-

uct in the right direction. Averaging profits less from the high confidence of the correct

decisions, and so is more vulnerable to the incorrect ones.

Recognition In the recognition experiments the algorithm was allowed toevaluate

every possible segmentation. The segmental probabilitieswere calculated exactly as

described in the previous section, but now as a part of the whole search process.

As regards language modeling – that is, the prior probabilities of phoneme se-

quences – two extreme cases were tried. In one case every phoneme was allowed to

follow a phoneme, and with equal probability. This could be called a ’unigram’ lan-

guage model. In the other case the possible phoneme sequences were restricted to a

26-word vocabulary, each word being equally probable. Thiscorresponds to a very

small vocabulary isolated word recognition task.

The scores reported when using the dictionary are simply thepercentage of words

recognized correctly. In the case of the unigram model, however, the result of recogni-



tion is a phoneme sequence that, besides misclassifications, can contain insertion and

deletion errors as well. The standard evaluation method is to match the result to the

manual phonemic transcription by calculating their edit distance (Younget al., 2004).

Having obtained the best match, all three types of error are counted and included in the

accuracy score.

When testing the product rule with the unigram model we found that – in accordance

with our expectations – insertion errors tended to overwhelm the result. We compen-

sated for this by raising the language model probabilities to an empirically tuned factor.

Following (Lee and Hon, 1989), this factor was adjusted so that the insertion errors went

down to about 10% of the number of test instances. A similar language model compen-

sation was applied in every case when insertion or deletion errors became seriously

unbalanced.

The results are listed in the last two columns of Table 2. The most important finding

is that the frame-based model with the product rule performed the best with both lan-

guage models, and the segmental model could not even come close. This shows that bet-

ter phoneme classification does not automatically warrant better recognition. Because

the segmental model is not designed to refuse outliers, a segmental recognizer needs

a further component to handle them. Although with such modifications the segmental

technology may outperform HMM, this means a further algorithmic and computational

burden compared to HMM that ’automagically’ handles this problem.

A further observation was that the product rule displayed a very consistent behavior

regarding insertion and deletion errors. This means that byadjusting the weight of the

language model we could easily tune the ratio of insertions and deletions in the Un-

igram experiments. In comparison, with the averaging rule we were unable to obtain

reasonable results because certain phonemes tended to ’eatup’ their neighbors, while

some others were cut into lots of small segments. The segmental model displayed a

quite similar rhapsodic behavior, although to a lesser extent. Besides insufficient outlier



Classification Recognition Acc.

Phoneme Model Accuracy Unigram Vocabulary

Frame-based, product rule 92.33% 82.05% 96.87%

Frame-based, sum rule 78.04% — 86.28%

Frame-based, product rule,nth root 92.33% — 41.78%

Segmental 94.58% 46.25% 87.00%

Segmental,nth power 94.58% 57.99% 88.29%

Table 1.Classification and recognition accuracies

modeling, weak duration modeling may also contribute to this. Although the segmental

duration was among the features and, in theory, the model hadthe option of making use

of it, we noticed that the model still allowed ridiculously long or short segments.

As regards the compensation experiment, taking thenth root had a fatal result on

recognition, leading to the chaotic behavior just mentioned. However, we have prob-

ably overcompensated for the bias of the product rule, so theexperiment where we

introduced a similar bias into the segmental model might be expected to yield more

conclusive results. In showed that raising to a power did notcause any harm. Actually,

it led to a slight improvement. It indicates that an incorrect bias that severely punishes

long segments performs better in finding the correct segmentation than a model that has

no idea of fake segments and is not really good at duration modeling anyway.

Finally, we should also mention that segmental models are more prone to vari-

ance problems due to insufficient data, as of course there aremany more frames than

phonemes. This may also contribute to the instability of thesegmental system.

9 Conclusions

This paper sought to gain an insight into why HMM speech recognizers, built on the

naive Bayes assumption, perform so well. We argued that speech recognition consists



of two subtasks, phoneme classification and outlier modeling, and that the naive Bayes

rule does well in both tasks. A small set of experiments was also carried out where we

compared the product rule with a segmental representation.We found that the segmen-

tal model performed only slightly better in classification and, in spite of acting better as

a classifier, provided much worse recognition. Overall thisshows that the simple prod-

uct rule, although suboptimal, warrants stable and reliable behavior along with a decent

recognition performance. In comparison, segmental recognizers have to take more care

of outliers. Although the phoneme models themselves could also be improved to refuse

fake segments, it is probably more effective to model them explicitly. This can be done

by introducing an ’anti-phoneme’ model (Galss, 1996; Tothet al., 2000) or by assess-

ing probabilities for the different segmentations and incorporating this factor into the

formulas (Verhasseltet al., 1998).

In spite of these difficulties, we believe that segmental representation, and our gen-

eralized decoding framework in particular, both offer a flexibility necessary for solving

the current outstanding problems of robust and reliable speech recognition. Hence we

plan to conduct further research into varying the components of our decoding scheme.
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