
Application of Kernel-Based Feature Space Transformations and

Learning Methods to Phoneme Classification ∗

András Kocsor and László Tóth
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Abstract. This paper examines the applicability of some learning techniques to the classification of phonemes. The methods
tested were artificial neural nets (ANN), support vector machines (SVM) and Gaussian mixture modeling (GMM). We
compare these methods with a traditional hidden Markov phoneme model (HMM), working with the linear prediction-based
cepstral coefficient features (LPCC). We also tried to combine the learners with linear/nonlinear and unsupervised/supervised
feature space transformation methods such as principal component analysis (PCA), independent component analysis (ICA),
linear discriminant analysis (LDA), springy discriminant analysis (SDA) and their nonlinear kernel-based counterparts. We
found that the discriminative learners can attain the efficiency of HMM, and that after the transformations they can retain
the same performance in spite of the severe dimension reduction. The kernel-based transformations brought only marginal
improvements compared to their linear counterparts.
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1. Introduction

Automatic speech recognition is a special pattern
classification problem which aims to mimic the per-
ception and processing of speech in humans. For
this reason it clearly belongs to the fields of ma-
chine learning (ML) and artificial intelligence (AI).
For historical reasons, however, it is mostly ranked
as a sub-field of electrical engineering, with its own
unique technologies, conferences and journals. In
the last two decades the dominant method for speech
recognition has been the hidden Markov model-
ing (HMM) approach. Meanwhile, the theory of
machine learning has developed considerably and
now has a wide variety of learning and classifica-
tion algorithms for pattern recognition problems.
The goal of this paper is to study the applica-
bility of some of these methods to phoneme clas-
sification, making use of so-called feature space
transformation methods applied prior to learning
to improve classification rates. In essence, this ar-
ticle deals with the neural network (ANN), sup-
port vector machine (SVM) and Gaussian Mix-
ture modeling (GMM) learning methods and with

∗ This work was supported under the contract IKTA No.
2001/055 from the Hungarian Ministry of Education.

feature space transformations principal component
analysis (PCA), independent component analysis
(ICA), linear discriminant analysis (LDA), springy
discriminant analysis (SDA) and their nonlinear
kernel-based counterparts [2, 3, 19–22, 26]. We com-
pare the performance of the learners with that of
HMM on the same feature set, namely the so-called
linear prediction-based cepstral coefficients (LPCC).

The structure of the paper is as follows. First,
we provide a short review of the phoneme clas-
sification problem itself and suggest some possi-
ble solutions. Then we briefly describe the acous-
tic features that were applied in the experiments
and review the linear and nonlinear feature space
transformation methods used. The final part of the
paper discusses aspects of the experiments, espe-
cially the advantages and drawbacks of the learning
methods compared, the effectiveness of each fea-
ture space transformation method and, of course,
the results obtained.

2. The Task of Phoneme Classification

Speech recognition is a pattern classification prob-
lem in which a continuously varying signal has to
be mapped to a string of symbols (the phonetic
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transcription). Speech signals display so many vari-
ations that attempts to build knowledge-based speech

recognizers have mostly been abandoned. Currently
researchers tackle speech recognition only with sta-
tistical pattern recognition techniques. Here, how-
ever a couple of special problems arise that have
to be dealt with. The first one is the question of
the recognition unit. The basis of the statistical
approach is the assumption that we have a finite
set of units (in other words, classes), the distri-
bution of which is modelled statistically from a
large set of training examples. During recognition
an unknown input is classified as one of these units,
using some kind of similarity measure. Since the
number of possible sentences or even words is po-
tentially infinite, some sort of smaller recognition
units have to be chosen in a general speech recog-
nition task. The most commonly used unit of this
kind is the phoneme, thus this paper deals with the
classification problem of phonemes.

The other special problem is that the length of
the units may vary, that is utterances get warped
along the time axis. The only known way of solv-
ing this is to perform a search in order to locate
the most probable mapping between the signal and
the possible transcriptions. Normally a depth-first
search is applied (implemented with dynamic pro-
gramming), but a breadth-first search with a good
heuristic is also viable.

3. Hidden Markov and Segmental

Phoneme Modeling

Hidden Markov Models [23] synchronously handle
both the problems mentioned above. Each phoneme
in the speech signal is given as a series of observa-
tion vectors O = o1, . . . ,oT , and one has one model
for each unit of recognition c. These models even-
tually return a class-conditional likelihood P (O|c).
The models are composed of states, and for each
state we model the probability that a given obser-
vation vector belongs to (“was omitted by”) this
state. Time warping is handled by state transition
probabilities, that is the probability that a certain
state follows the given state. The final “global”
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Figure 1. The three-state left-to-right phoneme HMM.

probability is obtained as the product of the proper
omission and state-transition probabilities.

When applied to phoneme recognition, the most
common state topology is the three-state left-to-
right model (see Fig.1). We use three states be-
cause the first and last parts of a phoneme are
usually different from the middle due to coarticu-
lation. This means that in a sense we do not really
model phonemes but rather phoneme thirds.

Because the observation vectors usually have
continuous values the state omission probabilities
have to be modeled as multidimensional likelihoods.
The usual procedure is to employ a mixture of
weighted Gaussian distributions of the form

p(oj) =
k

∑

i=1

αiN (oj, µi, Ci), (1)

where N (o, µi, Ci) denotes the multidimensional
normal distribution with mean µi and covariance
matrix Ci, k is the number of mixtures, and αi are
non-negative weighting factors which sum to 1.

A possible alternative to HMM are the Stochas-
tic Segmental Models. The more sophisticated seg-
mental techniques fit parametric curves to the fea-
ture trajectories of the phonemes [24]. There is,
however, a much simpler methodology [13] that
applies non-uniform smoothing and sampling in
order to parametrize any phoneme with the same
number of features, independent of its length. The
advantage of this uniform parametrization is that
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it allows us to apply any sort of machine learning
algorithm to the phoneme classification task. This
is why we chose this type of segmental modeling
for the experiments of this paper and also for our
speech recognition system [30].

4. Generative and Discriminative

Modeling

Hidden Markov Models describe the class condi-
tional likelihoods P (O|c). These type of models are
called generative because they model the probabil-
ity that an observation O was generated by a class
c. However, the final goal of classification is to find
the most probable class c. We can compute the
posterior probabilities P (c|O) from P (O|c) using
Bayes’ law. Another approach is to model the pos-
teriors directly. This is how discriminative learn-
ers work. Instead of describing the distribution of
the classes, these methods model the surfaces that
separate the classes and usually perform slightly
better than generative models. In this paper we ap-
plied one generative and two discriminative learn-
ers to classify the phonemes based on the segmen-
tal features. The generative one was the Gaussian

Mixture Model [9]. This is virtually the same as the
state omission formula of HMM (1), but in this case
it is used to parametrize a whole phoneme and not
frame-based observation vectors. From the family
of discriminative learners we chose to experiment
with the now traditional Artificial Neural Networks

[4], and a relatively new technology called Sup-

port Vector Machines. Rather than describing this
method in detail here we refer the interested reader
to the overview in [32].

5. Evaluation Domain

The feature space transformations and the classifi-
cation techniques were compared using a relatively
small corpus which consists of several speakers pro-
nouncing Hungarian numbers. More precisely, 20
speakers were used for training and 6 for testing,
and 52 utterances were recorded from each person.
The ratio of male and female speakers was 50%-
50% in both the training and testing sets. The

recordings were made using a cheap commercial
microphone in a reasonably quiet environment, at
a sample rate of 22050 Hz. The whole corpus was
manually segmented and labelled. Since the corpus
contained only numbers we had samples of only 32
phones, which is approximately two thirds of the
Hungarian phoneme set. As some of these labels
represented only allophonic variations of the same
phoneme, some labels were fused together, hence in
practice we only worked with a set of 28 labels. The
number of occurrences of the different labels in the
training set was between 40 and 599. The training
and test sets contained 5616 and 1692 data lines,
respectively.

6. Frame-Based and Segmental Features

There are numerous methods for obtaining repre-
sentative initial feature vectors from speech data
[23], but their common property is that they are
all extracted from 20-30 ms chunks or ”frames” of
the signal in 5-10 ms time steps. The HMM system
employed in our experiments was the FlexiVoice
speech engine [29] that works with the lpc-based
cepstral coefficients [23]. Because of this we con-
ducted all the experiments with this feature set. To
be more precise, 17 LPCC coefficients (including
the zeroth one) were extracted from 30 ms frames.
In the case of the HMM system the derivatives
of these were used as well, so a speech frame was
characterized by 34 features altogether.

All the other classifiers were tested within the
framework of the OASIS speech recognizer [30].
This is a segment-based recognizer that presumes
that any phonemic segment is described with the
same number of parameters. These segmental fea-
tures were obtained as follows. We averaged the
17 LPCC coefficients over segment thirds, which
resulted in 3 ∗ 17 = 51 features per phoneme. As
mentioned earlier, besides the frames themselves
HMM also uses frame-based derivatives to model
the spectral dynamics. To incorporate something
similar in our model, we simply took the differ-
ences of the neighbouring segmental averages. We
applied the same computation too at the phoneme
boundaries, and thus we obtained 4∗17 = 68 deriva-
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tive like features. Finally, the phoneme length was
included as a very important feature. This means
that altogether 120 features were used to describe
a complete phoneme.

When we compare this simple segmental model
to HMM it is quite clear that the latter is much
more involved. HMM makes use of all the signal
frames directly, while the segmental model dras-
tically smooths this information by representing
them only by three averages. Also, HMM has the
flexibility to model the possible variance of the po-
sition of the phonemic start and end phases, while
in the segmental model the averages are always
taken over rigid one-third divisions. One goal of
this paper is to show that even with this primitive
segmental model the classification performance of
HMM can be reached. In other experiments we
found that HMM can be outperformed by the seg-
mental model with the addition of some more com-
plex segmental features [18]. In this paper, how-
ever, we refrained from using these because we just
wanted to keep the segmental representation as
similar to the HMM one as possible.

In all the experiments we worked with the LPCC
coefficients because we wanted to have the seg-
mental and HMM inputs as similar as possible.
In earlier research, however, we found that this
representation is definitely not optimal for our sys-
tem. Just to show the capabilities of the segmental
model, we also report findings obtained via the
bark-scaled filterbank log-energies (FBLE). This
means that the signal is decomposed with a special
filterbank and the energies in these filters are used
to parameterize speech on a frame-by-frame basis.
The filters were approximated via Fourier analysis
with a triangular weighting, as described in [23].
The segmental features were calculated from FBLE
in the same way as from LPCC.

7. Linear Feature Space Transformation

Before executing a learning algorithm, additional
vector space transformations may be applied on
the initial features. The reason for doing this is
twofold. Firstly they can improve classification per-

formance and, secondly, they can also reduce the
dimensionality of the data.

Without loss of generality we shall assume that
as a realization of multivariate random variables,
there are n-dimensional real attribute vectors in
a compact set X over R

n describing objects in
a certain domain, and that we have a finite n ×
k sample matrix X = [x1, . . . ,xk] containing k
random observations. Actually, X constitutes our
initial feature space and X is the input data for
the algorithm, which determines the linear trans-
formation itself. The m × n (n ≤ m) matrix of
the linear transformation - which may inherently
include a dimension reduction - will be denoted by
V . The result V z of the transformation applied to
an arbitrary vector z ∈ X will be denoted by z∗.

With the linear feature space transformation
methods we search for an optimal (in some cases
orthogonal) matrix V , where the precise definition
of optimality can vary from method to method. Al-
though it is possible to define functions that mea-
sure the optimality of all the m directions (i.e. the
raw vectors of V ) together, we find each particular
direction of the optimal transformations one-by-

one, employing a τ : R
n → R objective function

for each direction separately. Intuitively, if larger
values of τ indicate better directions and the cho-
sen m directions need to be independent in some
ways, then choosing stationary points that have the
m largest function values is a reasonable strategy.
Obtaining the above stationary points of a general
objective function is a difficult global optimization
problem. But if τ is defined by Rayleigh quotient
formulae the solution is easy and fast when for-
mulated as a simple eigenvalue problem. Actually,
this approach offers a unified view of the linear
transformation methods discussed in this paper.

Finally, let us assume as well that we have r
classes and an indicator function

L : {1, . . . , k} → {1, . . . , r}, (2)

where L(i) gives the class label of the sample xi.
Let kj further denote the number of vectors asso-
ciated with label j in the sample data.

The two types of feature vector space transfor-
mations (supervised or unsupervised) can be dis-
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tinguished by whether they utilize an indicator func-
tion or not.

7.1. Principal Component Analysis

Principal component analysis [16] is a ubiquitous
unsupervised technique for data analysis and di-
mension reduction. Normally in PCA the objective
function τ for selecting new directions is defined by

τ(v) =
v⊤Cv

v⊤v
, (3)

where C = E{(x − E{x})(x − E{x})⊤} is the
sample covariance matrix, where E denotes the
mean value. It is easy to see that (3) defines τ(v)
as the variance of the centralized sample vectors
x1−E{x}, . . . ,xk −E{x} projected onto vector v.
So this method prefers directions having a large
variance. It can be shown as well that station-
ary points of (3) correspond to the right eigen-
vectors of the sample covariance matrix C where
the eigenvalues form the corresponding optimum
values. If we assume that the eigenpairs of C are
(c1, λ1), . . . , (ck, λk) and λ1 ≥ · · · ≥ λk, then the
transformation matrix V will be [c1, . . . , cm]⊤, i.e.
the eigenvectors with the largest m eigenvalues.
Notice that since the sample covariance matrix is
symmetric and positive semidefinite its eigenvalues
are nonnegative and its eigenvectors are orthogo-
nal. Moreover, after applying the above orthogonal
transformation V on the sample data X, we find
that V X is uncorrelated, i.e. its covariance matrix
is diagonal with λ1, . . . , λm being in the diagonal.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the PCA transformation can be
done using z∗ = V z. But if the output data needs
to be centralized we can apply V (z−E{x}) as well.

7.2. Independent Component Analysis

Independent Component Analysis [7, 10, 14, 15] is
a general purpose statistical method that originally
arose from the study of blind source separation
(BSS). A typical BSS problem is the cocktail-party
problem where several people are speaking simulta-
neously in the same room and several microphones
record a mixture of speech signals. The task is to

separate the voices of different speakers using the
recorded samples. Another application of ICA is
unsupervised feature extraction, where the aim is
to linearly transform the input data into uncorre-
lated components, along which the distribution of
the sample set is the least Gaussian. The reason for
this is that along these directions the data is sup-
posedly easier to classify. For optimal selection of
the independent directions several objective func-
tion were defined using approximately equivalent
approaches. Here we follow the way proposed by
Hyvärinen [10, 14, 15]. Generally speaking, we ex-
pect these functions to be non-negative and have
a zero value for the Gaussian distribution. Negen-
tropy is a useful measure having just this property,
which is used for assessing non-Gaussianity (i.e. the
least Gaussianity). Since obtaining this quantity
via its definition is computationally rather difficult,
a simple easily-computable approximation is nor-
mally employed. The negentropy of a variable η
with zero mean and unit variance is estimated by
using the formula

JG(η) ≈ (E{G(η)} − E{G(ν)})2 (4)

where G : R → R is an appropriate non-quadratic
function, E again denotes the expected value and ν
is a standardized Gaussian variable. The following
three choices of G are conventionally used:

G1(η) = η4,
G2(η) = log (cosh (η)),
G3(η) = − exp (−η2/2).

(5)

It should be mentioned that in (4) the expected
value of G(ν) is a constant, its value only depend-
ing on the selected function (e.g. E{G1(ν)} = 3).
In Hyvärinen’s FastICA algorithm for the selec-
tion of a new direction v the following τ objective
function is used:

τG(v) = (E{G(v · x)} − E{G(ν)})2 , (6)

which can be obtained by replacing η in the negen-
tropy approximant (4) with v · x, the dot product
of the direction v and sample x. FastICA is an ap-
proximate Newton iteration procedure for the local
optimization of the function τG(v). Before running
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FastICA, however, the raw input data X must first
be preprocessed – by centering and whitening it1.

Centering. An essential step is to shift the orig-
inal sample set x1, . . . ,xk with its mean E{x}, to
obtain data x′

1 = x1 −E{x}, . . . ,x′
k = xk −E{x},

with a mean of zero.
Whitening. The goal of this step is to transform

the centered samples x′
1, . . . ,x

′
k via an orthogonal

transformation Q into vectors x̂1 = Qx′
1, . . . , x̂k =

Qx′
k where the covariance matrix Ĉ = E{x̂x̂⊤} is

the unit matrix. Since standard principal compo-
nent analysis [16] transforms the covariance matrix
into a diagonal form, where the diagonal elements
are the eigenvalues of the original covariance ma-
trix E{x′x′⊤}, it only remains to transform each
diagonal element to one. Now if we assume that
the eigenpairs of E{x′x′⊤} are (c1, λ1), . . . , (ck, λk)
and λ1 ≥ . . . ≥ λk, the transformation matrix Q

will take the form [c1λ
−1/2
1 , . . . , cmλ

−1/2
m ]⊤. If m is

less than k a dimensionality reduction is employed.
Properties of the preprocessing stage. Firstly, af-

ter centering and whitening for every normalized
v the mean of v · x̂1, . . . , v · x̂k is set to zero, and
its variance is set to one. Actually we need this
since (4) requires that η should have a zero mean
and variance of one hence, with the substitution
η = v·x̂, the projected data v·x̂ must also have this
property. Secondly, for any matrix W the covari-
ance matrix ĈW of the transformed preprocessed
points W x̂1, . . . , W x̂k will remain a unit matrix if
and only if W is orthogonal, since

ĈW = E{W x̂(W x̂)⊤} = WE{x̂x̂⊤}W⊤

= WIW⊤ = WW⊤.
(7)

FastICA. After preprocessing, this method looks
for a new orthogonal base W for the preprocessed
data, where the values of the non-Gaussianity mea-
sure τG for the base vectors are large2. The follow-

1 There are many other iterative methods for performing
Independent Component Analysis, some of these similar to
FastICA do require centering and whitening, while others
do not. In general, experience has taught us that all these
algorithms should converge faster on centered and whitened
data, even those which do not really require it.

2 Note that since the data remains whitened after an
orthogonal transformation, ICA can be considered an ex-
tension of PCA.

ing pseudo-code is helpful in understanding how
the technique works3:

% The input for this algorithm is the

% sample matrix X and the nonlinear

% function G, while the output is the

% transformation matrix W. The first

% and second order derivatives of G
% are denoted by G

′

and G
′′

.
procedure FastICA(X, G);

% centering & whitening

x′ = x − E{x}; x̂ = Qx′;
% initialization

let W0 be a random m × m matrix;

W0 = (W0W
⊤
0 )−1/2W0;

i = 0;
% approximate Newton iteration

While W has not converged;

for j = 1 to m
let sj be the jth raw vector of Wi;

wj = E{x̂G
′

(sj · x̂)} − E{G
′′

(sj · x̂)}sj ;
end;

i = i + 1;
Wi = [w1, . . . ,wm]⊤;
Wi = (WiW

⊤
i )−1/2Wi;

do

End procedure

In the pseudo-code (WiW
⊤
i )−1/2Wi means a sym-

metric decorrelation, where (WiW
⊤
i )−1/2 can be

readily obtained from its eigenvalue decomposition.
If WiW

⊤
i = EDE⊤, then (WiW

⊤
i )−1/2 is equal to

ED−1/2E⊤.
Transformation of test vectors. For an arbitrary

test vector z ∈ X the ICA transformation can
be done using z∗ = WQz. Here W denotes the
orthogonal transformation matrix we obtained as
the output from FastICA, while Q is the matrix
obtained from whitening. Much like that in PCA,
if we require that the output data be centralized
then z∗ = WQ(z − E{x}).

3 MatLab code available in [10].
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7.3. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a traditional
supervised feature extraction method [11] which
has proved to be one of the most successful pre-
processing techniques for classification4. The goal
of LDA is to find a new (not necessarily orthogonal)
basis for the data which provides the optimal sepa-
ration between groups of sample points (classes). In
order to define the transformation matrix of LDA
we first define the objective function τ : R

n → R

which depends not only on the sample data X,
but also on the indicator function L owing to the
supervised nature of this method. Let us define

τ(v) =
v⊤Bv

v⊤Wv
, v ∈ R

n \ {0}, (8)

where B is the Between-class Scatter Matrix, while
W is the Within-class Scatter Matrix. Here the
Between-class Scatter Matrix B shows the scatter
of the class mean vectors mj around the overall
mean vector m:

B =
∑r

j=1
kj

k (mj − m)(mj − m)⊤

m = 1
k

∑k
i=1 xi

mj = 1
kj

∑

L(i)=j xi

(9)

The Within-class Scatter Matrix W represents the
weighted average scatter of the covariance matrices
Cj of the sample vectors having label j:

W =
∑r

j=1
kj

k Cj

Cj = 1
kj

∑

L(i)=j(xi − mj)(xi − mj)
⊤.

(10)

τ(v) is large when its nominator is large and its
denominator is small or, equivalently, when the
within-class averages of the sample projected onto
v are far from each other and the variance of the
classes is small. The larger the value of τ(v) the
farther the classes will be spaced and the smaller
their spreads will be. It can be easily shown that
stationary points of (8) correspond to the right
eigenvectors of W−1B, where the eigenvalues form
the corresponding function values. Since W−1B is
not necessarily symmetrical and its rank is at most

4 One should note here that the technique can be directly
used for classification as well.

the class number minus one (r− 1), the number of
its real, not necessarily orthogonal eigenvectors can
be less than r. Besides this, numerical problems can
arise during the computation of W−1 if det(W ) is
near zero. The most probable cause for this could
be the redundancy of feature components. But we
know W is positive semidefinite. So if we add a
small positive constant ǫ to its diagonal, that is
we work with W + ǫI instead of W , this matrix is
guaranteed to be positive definite and hence should
always be invertible. This small act of cheating
can have only a negligible effect on the stationary
points of (8). If we assume that the real eigen-
vectors with the largest m(< r) real eigenvalues
of W−1B are c1, . . . , cm, then the transformation
matrix V will be [c1, . . . , cm]⊤.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the LDA transformation can be
done using z∗ = V z.

7.4. Springy Discriminant Analysis

We saw that LDA can become numerically un-
stable because of the invertibility problem of the
Within-class Scatter Matrix. Furthermore, the non-
orthogonality of the resulting transformation ma-
trix may prove disadvantageous. These issues give
rise to the need for an objective function τ that
leads to an unsupervised transformation which yields
similar results to LDA, but is orthogonal and avoids
the numerical problems mentioned [21]. To do this,
let us first define the matrix Θ as

[Θ]ij =

{

−1, if L(i) = L(j)
1, otherwise

i, j = 1, . . . , k.

(11)
Then, let the function δ be defined by

δ(v) =
k

∑

i,j=1

(

(xi − xj)
⊤

v
)2

[Θ]ij (12)

It is easy to see that the value of δ is largest when
those components of the elements of the same class
that fall in the given direction v ∈ R

n, ‖v‖ = 1
are close, and the components of different classes
are far at the same time. This can be viewed as
if the data point (vectors) of the same class were
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8 A. Kocsor and L. Tóth

interconnected by springs, and the points of dif-
ferent classes by ”anti-springs”. The goal of the
transformation is to minimize the system’s poten-
tial as a function of direction v. The name of the
transformation stems from this physical analogy.
Now by the introduction of the matrix

D =
k

∑

i,j=1

(xi − xj) (xi − xj)
⊤ [Θ]ij (13)

we immediately obtain that δ(v) = v⊤Dv. Based
on this, the objective function τ can be defined as
the Rayleigh quotient

τ(v) =
δ(v)

v⊤v
=

v⊤Dv

v⊤v
. (14)

Obviously, the optimization of τ leads to the eigen-
value decomposition of D, just like in the case of
PCA. Because D is symmetric, its eigenvalues are
real and its eigenvectors are orthogonal. For this
reason, the matrix V of the transformation is de-
fined using those eigenvectors corresponding to the
m dominant eigenvalues of D.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the SDA transformation can be
made using z∗ = V z.

8. Kernel-based Feature Vector

Transformations

The approach of feature extraction could be ei-
ther linear or nonlinear, but it seems there is a
technique (which is most topical nowadays) that
is, in some sense, breaking down the barrier be-
tween the two types. The key idea behind the ker-
nel technique was originally presented in [1] and
was again applied in connection with the general
purpose Support Vector Machine [5, 6, 28, 31, 32],
which was followed by other kernel-based methods
[2, 3, 19–22, 26, 27, 25]. To put the kernel idea
in a nutshell, we might explain it as follows. If
some method uses only the pairwise scalar product
(xi ·xj) of its input vectors during its computations
then, just by altering the scalar product operation
in a proper way, we can create a non-linear version
of the method. The effect of the replacement of

Figure 2. The ”kernel-idea”. The dot product in the kernel
feature space F is defined implicitly.

the operation is that the original method will im-
plicitly be performed in a space of more (possibly
even infinite) dimensions, and thus with a higher
degree of freedom. In the following this notion is
also used to derive nonlinear counterparts of PCA,
ICA, LDA and SDA.

We recall that we have a sample matrix X =
[x1, . . . ,xk] containing k random observations and
that we have an indicator function L which returns
the class label of each sample vector.

8.1. Kernel-Induced Feature Spaces

A ’kernel’ is a continuous function κ : X × X →
R (see Fig. 2) for which there exists an F inner
product space as a representation space and a map
φ : X → F such that for all

x, z ∈ X κ(x, z) = φ(x) · φ(z) (15)

This definition allows us to perform calculations
in the F space in an implicit way, by substituting
the scalar product operation with its correspond-
ing kernel version. Usually F is called the kernel
feature space and φ is the feature map. Know-
ing φ explicitly – and, consequently, knowing F
– is not necessary. We need only define the kernel
function, which then ensures an implicit evalua-
tion. The construction of an appropriate kernel
function (i.e. when such a function φ exists) is a
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non-trivial problem, but there are many good sug-
gestions about the sorts of kernel functions which
might be adopted along with some background the-
ory [8, 12, 17]. From the functions available, the
two most popular are the polynomial kernel κ1 and
the Gaussian RBF kernel κ2:

κ1(x, z) = (x · z + 1)d , d ∈ N,
κ2(x, z) = exp

(

−||x − z||2/γ
)

, γ ∈ R+.
(16)

8.2. PCA in Kernel Feature Spaces

Having chosen a proper κ kernel function for which

κ(x, z) = φ(x) · φ(z), x, z ∈ R
n,

holds for a mapping φ : R
n → F , we now give the

PCA transformation in F .
First, let us examine the form of the τ objective

function in the kernel feature space F :

τ(v) =
v⊤Cv

v⊤v
, v ∈ F \ {0}, (17)

where C is the covariance matrix of the sample
φ(x1), . . . , φ(xk):

C = E{(φ(x) − E{φ(x)}) (φ(x) − E{φ(x)})⊤}.
(18)

Much like the PCA approach, we define the Kernel-
PCA transformation based on the stationary points
of (17), which are given as the eigenvectors of the
symmetric positive semidefinite matrix C. However,
since this matrix is of the form

C =
k

∑

i,j

cijφ(xi)φ(xj)
⊤, (19)

we can suppose the following equation holds during
the analysis of the stationary points:

v =
k

∑

i=1

αiφ(xi). (20)

We can arrive at this assumption in many ways,
e.g. we can decompose an arbitrary vector v into
vectors v1 + v2, where v1 gives that component
of v which falls in SPAN(φ(x1), . . . , φ(xk)), while

v2 gives the component perpendicular to it. Then
from the derivation of (17) we see that v⊤

2 v2 =
0 for the stationary points. Based on the above
assumption the variational parameters of τ can be
the vector α instead of v:

τ(α) =

(

∑k
i=1 αiφ(xi)

⊤

)

C
(

∑k
j=1 αjφ(xj)

)

(

∑k
i=1 αiφ(xi)⊤

) (

∑k
j=1 αjφ(xj)

) .

(21)
It is easy to see that

τ(α) =
α

⊤ 1
kK(I − 1̄)Kα

α⊤Kα
, (22)

where [K]ij = φ(xi) · φ(xj) = κ(xi,xj) is a Gram
matrix and [1̄]ij = 1/k.

After differentiating (22) with respect to α we
see that the stationary points are the solution vec-
tors of the general eigenvalue problem

1

k
K(I − 1̄)Kα = λKα, (23)

which is equivalent to the problem

1

k
(I − 1̄)Kα = λα. (24)

Although the matrix (I − 1̄)K is not symmetric,
its eigenvalues are real and non-negative, and those
eigenvectors that correspond to positive eigenval-
ues are orthogonal. In fact the best approach is to
solve the following symmetric eigenproblem, where
the positive eigenvalues and the corresponding eigen-
vectors are equal to those obtained from (24)

1

k
(I − 1̄)K(I − 1̄)α = λα. (25)

We note that we would have arrived at the same
eigenproblem had we presumed that

v =
k

∑

i=1

αi (φ(xi) − E{φ(x)}) (26)

instead of (20). With this assumption we would
have obtained the function

τ(α) =
α

⊤ 1
k (I − 1̄)K(I − 1̄)(I − 1̄)K(I − 1̄)α

α⊤(I − 1̄)K(I − 1̄)α
.

(27)
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10 A. Kocsor and L. Tóth

Now let the m positive dominant eigenvalues
of 1

k (I − 1̄)K(I − 1̄) be denoted by λ1 ≥ . . . ≥ λm

and the corresponding eigenvectors be α1, . . . ,αm.
Then the orthogonal matrix of the transformation
we need can be calculated like so:

V = AX̄,
A = [α1, . . . ,αm]⊤,
X̄ = [φ(x1), . . . , φ(xk)]

⊤.
(28)

Of course the norm of the eigenvectors alpha can
easily chosen such that the norm of the column
vectors of the transformation matrix V = AX̄ be-
comes 1.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the Kernel-PCA transforma-
tion can be done using z∗ = V φ(z) = AX̄φ(z) =
Aκ(X, z), where κ(X, z) is a shorthand notation
for

[κ(x1, z), . . . , κ(xk, z)]
⊤. (29)

8.3. ICA in Kernel Feature Spaces

In this section we derive the kernel counterpart of
FastICA [20]. To this end, let the inner product
be implicitly defined by the kernel function κ in F
with associated transformation φ. Now we will only
extend nonlinearly the centering and whitening of
the data, since after it we get standardized data
in the kernel feature space F . The iterative part
of FastICA requires standardization but, although
it could be done, the iterative part itself is not
nonlinearized here.

Centering in F . We shift the data φ(x1), . . . ,
φ(xk) with its mean E{φ(x)}, to obtain data

φ′(x1) = φ(x1) − E{φ(x)}
...

φ′(xk) = φ(xk) − E{φ(x)}

(30)

with a mean of 0.
Whitening in F . Much like that in linear ICA,

the goal of this step is to find a transformation
matrix Q such that the covariance matrix

Ĉ =
1

k

k
∑

i=1

φ̂(xi)φ̂(xi)
⊤

(31)

of the sample

φ̂(x1) = Qφ′(x1)
...

φ̂(xk) = Qφ′(xk)

(32)

is a unit matrix. As we saw earlier the column
vectors of Q are the weighted eigenvectors of the
positive semidefinite matrix

C =
1

k

k
∑

i=1

φ′(xi)φ
′(xi)

⊤
. (33)

That is, based on the formula we got in Kernel-
PCA (28), the transformation matrix can be de-
fined by

Q = AX̄,

A = [λ
−1/2
1 α1, . . . , λ

−1/2
m αm]⊤,

X̄ = [φ(x1), . . . , φ(xk)],

(34)

where (α1, λ1), . . . , (αm, λm) are the dominant m
eigenpairs of (25).

Transformation of test vectors. For an arbitrary
test vector z ∈ X the Kernel-ICA transformation
can be made using z∗ = WQφ(z) = WAκ(X, z).
Here W denotes the orthogonal transformation ma-
trix we obtained as the output from the iterative
section of FastICA, while Q is the matrix obtained
from kernel centering & whitening.

Practically speaking, Kernel-FastICA = Kernel-
Centering + Kernel-Whitening + iterative section
of the original FastICA.

8.4. LDA in Kernel Feature Spaces

Let us consider the following function for a fixed
κ, φ and F .

τ(v) =
v⊤Bv

v⊤Wv
, v ∈ F \ {0}, (35)

where the matrices needed for LDA are now given
in F [19]:

B =
∑r

j=1
kj

k (µj − µ)(µj − µ)⊤

W =
∑r

j=1
kj

k Cj

µ = 1
k

∑k
i=1 φ(xi)

µj = 1
kj

∑

L(i)=j φ(xi)

Cj = 1
kj

∑

L(i)=j(φ(xi) − µj)(φ(xi) − µj)
⊤

(36)
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We may also suppose without loss of generality
here that v =

∑k
i=1 αiφ(xi) holds during the search

for the stationary points of (35). With this assump-
tion, after some algebraic rearrangement we obtain
the formula

τ(v) =
v⊤Bv

v⊤Wv
=

α
⊤KΘ1Kα

α⊤KΘ2Kα
= τ(α), (37)

where K is the kernel matrix, Θ1 = I − 1̄ and

[Θ2]ij =

{

1
kt

− 2
k + 1

k2 , if t = L(i) = L(j)

− 2
k + kt+ks

k2 , if t = L(i) 6= L(j) = s

(38)
This means that (35) can be expressed as dot prod-
ucts of φ(x1), . . . , φ(xk) and that the stationary
points of this equation can be computed using the
real eigenvectors of (KΘ2K)−1KΘ1K. Since in gen-
eral KΘ2K is a positive semidefinite matrix, it
can be forced to be invertible using the technique
presented in the subsection of LDA. For defining
the transformation matrix V of Kernel-LDA we
will use only those eigenvectors which correspond
to the m dominant real eigenvalues, denoted by
α1, . . . ,αm.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the Kernel-LDA transformation
can be performed using z∗ = V X̄φ(z) = V κ(X, z).

8.5. SDA in Kernel Feature Spaces

Now let the dot product be implicitly defined by
the kernel function κ in some finite or infinite di-
mensional feature space F with associated trans-
formation φ:

κ(x, z) = φ(x) · φ(z). (39)

Let δ(v), the potential of the spring model along
the direction v in F , be defined by

k
∑

i,j=1

((φ(xi) − φ(xj))
⊤v)2[Θ]ij , (40)

where

[Θ]ij =

{

−1, if L(i) = L(j)
1, otherwise

i, j = 1, . . . , k.

(41)

Technically speaking, Kernel-SDA [21] searches for
those directions v of the form X̄α with a vari-
ational parameter vector α, along which a large
potential is obtained. However, instead of the func-
tion δ(X̄α), we use its normalized version

τ(α) =
δ(X̄α)

α⊤α
, (42)

when selecting new directions. It is easy to prove
that τ(α) is equal to the following Rayleigh quo-
tient formula

τ(α) =
α

⊤X̄⊤AX̄α

α⊤α
, (43)

where

A =
k

∑

i,j=1

(φ(xi) − φ(xj)) (φ(xi) − φ(xj))
⊤ [Θ]ij .

(44)
Moreover, it is also straightforward to prove that
(43) takes the following form:

α
⊤

(

KΘ̃K⊤ − KΘK⊤

)

α

α⊤α
, (45)

where K is the kernel matrix and Θ̃ is a diagonal
matrix with the sum of each row of Θ in the diag-
onal. The stationary points of the above Rayleigh
quotient formula will furnish the row vectors of the
orthogonal matrix V .

After taking the derivative of (45) it is read-
ily seen that the stationary points of τ(α) can
be obtained via an eigenanalysis of the following
symmetric eigenproblem:

(KΘ̃K⊤ − KΘK⊤)α = λα. (46)

If we assume that the dominant m eigenvectors
are α1, · · · , αm then the orthogonal matrix V is
defined by [α1c1, · · · , αmcm]⊤, where the normal-
ization parameter ci is equal to (α⊤

i Kαi)
−1/2. This

normalization factor ensures that the two-norm of
row vectors of the transformation matrix V X̂ is
unity.

Transformation of test vectors. For an arbitrary
test vector z ∈ X the Kernel-SDA transformation
can be done using z∗ = V X̄φ(z) = V κ(X, z).
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9. Experiments

All the experiments were run on the LPCC and
FBLE features described in Section 6. As men-
tioned previously, HMM results were obtained only
for the LPCC case. Overall, the exact parameters
for the learners and the transformations were as
follows.

Hidden Markov modeling. In the HMM experi-
ments the phoneme models were of the three-state
strictly left-to-right type, that is each state had
one self transition and one transition to the next
state. In each case the observations were modeled
using a mixture of four Gaussians with diagonal
covariance matrices. The models were trained using
the Viterbi training algorithm.

Gaussian mixture modeling. Unfortunately there
is no closed formula for getting the optimal pa-
rameters of the mixture model, so the expectation-
maximization (EM) algorithm is normally used to
find proper parameters, but it only guarantees a
locally optimal solution. This iterative technique is
very sensitive to initial parameter values, so we uti-
lized k-means clustering [23] to find a good starting
parameter set. Since k-means clustering again only
guaranteed finding a local optimum, we ran it 15
times with random parameters and used the one
with the highest log-likelihood to initialize the EM
algorithm. After experimenting, the best value for
the number of mixtures k was found to be 2. In
all cases the covariance matrices were forced to be
diagonal.

Artificial neural networks. In the ANN experi-
ments we used the most common feed-forward mul-
tilayer perceptron network with the backpropaga-
tion learning rule. The number of neurons in the
hidden layer was set at 150 in all experiments ex-
cept in the case of LDA and KLDA where a value
of 50 was found sufficient because of the enormous
dimension reduction (these values were chosen em-
pirically based on preliminary experiments). Train-
ing was stopped based on the cross-validation of
15% of the training data.

Support Vector Machine. In the experiments with
SVM a third-order polynomial kernel function was
applied.

As regards the transformations, in the case of
(Kernel-)LDA the original 120 dimensions were re-
duced to just 27, the number of classes minus one.
In the case of the (Kernel-)PCA and (Kernel-)ICA
transformations we kept the largest m components
that retained 99% of the spectrum. In our case m
turned out to be 81. This was also a reasonable
choice for (Kernel-)SDA. In the case of the kernel
transformations we always used a Gaussian RBF
kernel function.

Naturally when we applied a certain transfor-
mation on the training set before learning, we ap-
plied the same transformation on the test data
during testing.

10. Results and Discussion

Table 1 shows the recognition accuracies where the
columns represent the feature sets (transformed/
untransformed), while the rows correspond to the
applied learning methods. For HMM we have only
one score, as in this case no transformation could
be applied.

Upon inspecting the results the first thing one
notices is that the discriminative learners (ANN
and SVM) always outperform the generative one
(GMM). Hence there is a clear advantage of model-
ing the classes together rather than separately. An-
other important observation is that HMM, in spite
of being a generative model, produced the highest
score. But one has to keep in mind that HMM uses
many more features per phoneme (the exact num-
ber depending on the segment length), and also
a quite involved integration technique. Actually,
we consider the fact that we could attain practi-
cally the same score with our quite simple feature
extraction method as proof that the HMM tech-
nique can be easily surpassed with a more sophis-
ticated discriminative segmental phoneme model.
We should also mention here that our segmental
feature calculation method was devised with FBLE
preprocessing in mind and that it works much bet-
ter with those features. Our current best result
with FBLE is 95.55%, which shows that LPCC is
definitely not an optimal choice for our system -
but the goal of this paper was to compare HMM
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Table I. Recognition accuracies for the phoneme classification. The maximum is in bold.

classifier

none

variable

none

120

PCA

81

ICA

81

LDA

27

SDA

81

KPCA

81

KICA

81

KLDA

27

KSDA

81

ANN - 90.18 90.42 88.65 89.24 90.95 90.66 89.24 89.95 91.19

GMM - 83.33 82.47 82.09 87.44 86.70 83.21 82.44 89.83 89.36

SVM - 90.13 89.53 88.94 90.78 90.42 90.07 89.95 91.90 91.48

HMM 90.66 - - - - - - - - -

and the other learners with the same preprocessing

technique.
As regards the transformations, we found that

the scores show no significant differences. However,
it is clear that the supervised techniques (LDA/
KLDA and SDA/KSDA) are in general superior
to the unsupervised ones (PCA/KPCA and ICA/
KICA). After LDA the learners could produce the
same or similar scores in spite of the drastic dimen-
sion reduction performed (120 features reduced to
27). SDA scored very similar results, although it
worked with 81 features. PCA in most cases did
slightly worse. We attribute this to the fact that
LPCC inherently contains an orthogonal transfor-
mation (the discrete cosine transform), so PCA
could not bring any additional gain. ICA always
performed the worst, which accords with our ear-
lier findings, where we could find no real advantage
of using ICA in the phoneme recognition task.

As regards the kernel-based transformations, we
found that they outperform their linear versions,
but not significantly. As in other tests we found
them much more effective, which we attribute to
the sensitivity to the parameter settings. It seems a
more thorough search for their optimal parameters
might have resulted in a better performance.

11. Conclusions and Future Work

The main goal of this paper was to compare several
classification and transformation methods applied
to phoneme classification. A further goal was to
compare these scores with the performance of an
HMM system. For this reason we used the LPCC
feature set and a relatively simple segmental model.

We found that our classifier can attain scores very
similar to those of HMM, in spite of the very simple
segmental modeling.

As regards the transformations, we learned that
the supervised ones are the most useful. Kernel
transformations proved most promising, but some
of them need further experimentation. We think
that it would be worth looking for other supervised
techniques that could be constructed in a similar
way to the SDA one.

In the future we plan to conduct more exper-
iments to fine tune the parameters of the kernel
methods, and also to examine other kernel func-
tions as well. In the case of SDA and KSDA a
more sophisticated setup of the Θ matrix might
lead to a better performance. This is one of our
future research aims.

As regards the applicability of the classifiers in
a continuous speech recognizer, we found we could
attain results just like those of HMM with the ap-
plication of the segment model [30]. But the study
of the effect of linear and nonlinear feature space
transformations at the word level will be a subject
of future work.
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