
Margin Maximizing Discriminant Analysis

András Kocsor1, Kornél Kovács1, and Csaba Szepesvári2
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Abstract. We propose a new feature extraction method called Margin
Maximizing Discriminant Analysis (MMDA) which seeks to extract fea-
tures suitable for classification tasks. MMDA is based on the principle
that an ideal feature should convey the maximum information about the
class labels and it should depend only on the geometry of the optimal
decision boundary and not on those parts of the distribution of the input
data that do not participate in shaping this boundary. Further, distinct
feature components should convey unrelated information about the data.
Two feature extraction methods are proposed for calculating the param-
eters of such a projection that are shown to yield equivalent results. The
kernel mapping idea is used to derive non-linear versions. Experiments
with several real-world, publicly available data sets demonstrate that the
new method yields competitive results.

1 Introduction

In this paper we consider feature extraction in a classification context. Feature
extraction can be used for data visualization, e.g. plotting data in the coordi-
nate system defined by the principal components of the data covariance matrix.
Visualization may help us to find outliers, or meaningful clusters. Another good
use of feature extraction is noise reduction. In classification the goal is to sup-
press irrelevant information in order to make the classification task using the
transformed data easier and simpler.

Feature extraction is the process of transforming the input patterns either by
means of a linear or a non-linear transformation. Linear transformations are more
amenable to mathematical analysis, while non-linear transformations are more
powerful. When linear methods are applied to non-linearly transformed data, the
full method becomes non-linear. One important case is when the linear method
uses only dot-products of the data. In this case the kernel mapping idea [1, 15,
19] can be used to obtain an efficient implementation whose run time does not
depend on the dimensionality of the non-linear map’s image space. This ’kernel
mapping’ idea applies to many well-known feature extraction methods like prin-
cipal component analysis and linear discriminant analysis. In classification, the
best known example utilizing this idea is the support vector machine (SVM) [19].



Principal component analysis (PCA) [9] is one of the most widely-known
linear feature extraction methods used. It is an unsupervised method that seeks
to represent the input patterns in a lower dimensional subspace such that the
expected squared reconstruction error is minimized. By its very nature PCA is
not meant for classification tasks. So, in the worst case, the Bayes error rate may
become arbitrarily bad after the data is projected onto the first few principal
components even if the untransformed data was perfectly classifiable. We shall
call this phenomenon a filtering disaster. PCA can still be very useful e.g. for
suppressing “small noise” which corrupts the input patterns regardless of the
class labels. PCA has been generalized to KPCA [18] by using the kernel mapping
idea.

Classical linear discriminant analysis (LDA) [7] searches for directions that
allow optimal discrimination between the classes provided that the input pat-
terns are normally distributed for all classes j = 1, . . . ,m and share the same
covariance matrix. If these assumptions are violated LDA becomes suboptimal
and a filtering disaster may occur. Recently, LDA has been generalized using the
kernel mapping technique [2, 14, 17] as well.

Discriminant analysis as a broader subject addresses the problem of finding
a transformation of the input patterns such that classification using the trans-
formed data set becomes easier (e.g. by suppressing irrelevant components, or
noise). More recent methods in discriminant analysis include the “Springy Dis-
criminant Analysis” (SDA) (and its non-linear kernelized counterpart, KSDA),
which was derived using a mechanical analogy [10, 11] or, in a special case, as a
method for maximizing the between-class average margin itself averaged for all
pairs of distinct classes [12]. The goal of the algorithm proposed in [6] is to find
a linear transformation of the input patterns such that the statistical relation-
ship between the input and output variables is preserved. The authors of this
article use reproducing kernel Hilbert spaces (RKHS) to derive an appropriate
contrast function. One distinctive feature of their approach is that the method
is completely distribution free. There are many other methods available but we
will not discuss them here due to lack of space.

In this paper we propose a new linear feature extraction method that we
will call Margin Maximizing Discriminant Analysis (MMDA). MMDA projects
input patterns onto the subspace spanned by the normals of a set of pairwise
orthogonal margin maximizing hyperplanes. The method can be regarded as a
non-parametric extension of LDA which makes no normality assumptions on the
data but, instead, uses the principle that the separating hyperplane employed
should depend on the decision boundary only. A deflation technique is proposed
to complement this principle to extract a sequence of orthogonal projection
directions. A corresponding non-linear feature extraction method is derived using
the kernel mapping technique. The performance of the proposed methods is
examined on several real-world datasets. Our findings show that the new method
performs quite well and, depending on the dataset may sometimes perform better
than any of the other methods tested, resulting in an increase in classification
accuracy.



2 Principles of MMDA

MMDA makes use of the principal idea underlying LDA: projecting the input
data onto the normal of a given hyperplane which separates the two classes
best and provides all the information a decision maker needs to classify the
input patterns. However, at this point LDA places normality assumptions on
the data, whereas we make no such assumptions, but propose to employ margin
maximizing hyperplanes instead.

This choice was motivated by the following desirable properties of such hyper-
planes [5, 3, 8]: (i) without any additional information they are likely to provide
good generalization on future data; (ii) these hyperplanes are insensitive to small
perturbations of correctly classified patterns lying further away from the sepa-
rating hyperplane; moreover, (iii) they are insensitive to small variations in their
parameters. In addition to these properties, margin maximizing hyperplanes are
insensitive to the actual probability distribution of patterns lying further away
from the decision boundary. Hence when a large mass of the data lies far away
from the ideal decision boundary we can expect the new method to win against
those methods that minimize some form of average loss/cost since those meth-
ods necessarily take into account the full distribution of the input patterns. An
example of such a situation is depicted in Figure 1. Note that such situations are
expected to be quite common in practical applications like character recognition
and text categorization. Actually, the original motivation of MMDA stems from
a character recognition problem. Suppose that there are two character classes.
Suppose also that the input space is the space of character images. Then, let us
concentrate only on two pixels. Specifically, let us assume that pixel 1 is such
that for characters in class 1, it can be ‘on’ or ‘off’, but in the majority of cases
it is ‘on’. Further, let us assume that pixel 1 is never ‘on’ for characters in class
2. Suppose too that pixel 2 is such that it is always ‘off’ for characters in class 1
and it is always ‘on’ for characters in class 2. Admittedly, these are strong simpli-
fying assumptions, but similar cases do occur in real-world character recognition
tasks. In this simplified case, the ideal feature extractor should actually work
like a feature selection method: since the two classes are well separated by using
pixel 2, it should project the 2D space of the two pixels onto the second coordi-
nate. Now notice that this is the situation depicted in Figure 1. LDA and PCA
fail to find such a projection, but MMDA succeeds in doing so.

We supplement the idea of projecting onto the space spanned by the normal
of a margin maximizing hyperplane by a deflation technique which guarantees
that all subsequent hyperplanes (and all subsequent normals) are orthogonal to
each other. As a result each successive feature extraction step extracts “new”
information unrelated to information extracted in the previous steps.

Deflation can be incorporated as a step to transform the data covariance
matrix. However, we can also incorporate a suitable orthogonality criterion in
the equations defining the margin maximizing hyperplane. We will show the
equivalence of these two approaches in the next section and discuss their rela-
tive merits.
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Fig. 1. An illustration of the behavior of PCA, LDA and MMDA for a binary clas-
sification problem. The figure shows the one-dimensional subspace represented by a
hyperplane that PCA, LDA and MMDA project the data onto. Although the data
is linearly separable, PCA and LDA fail to find a subspace such that the data when
projected onto the subspace remains linearly separable. MMDA avoids this problem by
projecting onto the normal of a separating hyperplane when such a hyperplane exists.

3 Linear Feature Extraction

3.1 The Deflation Approach

Let X, y be the training data, where X = (x1, . . . , xn) are the input patterns
(xj ∈ R

d) and y ∈ {−1,+1}n are the corresponding target labels. We will
assume that (xi, yi), i = 1, . . . , n are independent, identically distributed random
variables.

Assuming that the data (X, y) is separable, the maximum margin separating
hyperplane can be found as a solution of a quadratic programming problem [5].
When the data is not separable the maximum margin separation problem is
modified to simultaneously maximize the margin and minimize the error [19].
This still results in a quadratic programming problem. In order to introduce the
corresponding equations formally, let us fix a positive real number C that we will
use to weight the misclassification cost. Then the maximum margin separation
(MMS) problem is defined as follows: Given (X, y,C) find w ∈ R

d, b ∈ R and
ξ = (ξ1, . . . , ξn)T ∈ R

n such that3

1

2
‖w‖2

2 + C

n
∑

i=1

ξi → min s.t.

yi(w
T xi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , n.

(1)

MMDA now proceeds as follows: Given (X, y,C), find the solution of the MMS
problem (X, y,C). Let this solution be (w1, b1). The first extracted feature com-
ponent is f1(x) = wT

1 x. Now transform the data by projecting it onto a space

3 Here ‖w‖2 denotes the ℓ
2 norm of w.



orthogonal to w1. For simplicity, assume that w1 is normalized so ‖w1‖2 = 1.
Then the projected data is given by

x′

i = xi − (wT
1 xi)w1. (2)

Let X ′ denote the matrix (x′

1, . . . , x
′

n) and let (w2, b2) be the solution of the MMS
problem (X ′, y, C). Then the second extracted feature component is f2(x) =
wT

2 x′, where x′ = x − (wT
1 x)w1. This procedure can be repeated as many times

as desired. The following proposition shows that w1 and w2 are orthogonal.

Proposition 1 Let (w1, b1) be the solution of the MMS problem (X, y,C) and

(w2, b2) be the solution of the MMS problem (X ′, y, C), where X ′ = (x′

1, . . . , x
′

n)
with x′

i defined by (2). Then the vectors w1 and w2 are orthogonal4 .

A corollary of this proposition is that f2(x) = wT
2 (x−(wT

1 x)w1) = wT
2 x. Simi-

larly, if w3, . . . , wr (r ≤ d) are the normals extracted up to step r then w1, . . . , wr

are pairwise orthogonal and the ith feature value fi(x) can be computed via:

fi(x) = wT
i x. (3)

In order to derive our first practical algorithm let us note that the solution
of the MMS problem is typically obtained via the Langrangian dual of (1):

−
1

2
αT Rα + αT 1 → max

such that yT α = 0, 0 ≤ α ≤ C1,

(4)

where the matrix R is defined by R = Y XT XY and Y = diag(y1, . . . , yn) and
α ∈ R

n [19]. Here C1 = (C, . . . , C)⊤ ∈ R
d and the comparison of vectors is made

one component at a time. Given α, the solution of (4), the solution of the MMS
problem (X, y,C) is recovered through w = Xα and b = 1T α. We shall call (4)
the dual MMS problem parameterized by (R, y,C).

Let X ′ be defined as before. Notice that (4) depends on the data vector
X only through the matrix R. Hence, the Langrangian dual defined for the
transformed data X ′ takes the form in (4), but R needs to be recalculated. The
next proposition shows how to do this in the general case when the data is
projected onto a subspace spanned by an orthonormal system:

Proposition 2 Let X ′ be the data X projected onto a space orthogonal to the

orthonormal system W = (w1, . . . , wr). Then

R′ = Y (X ′)T X ′Y = Y
(

XT X − V T V
)

Y, (5)

where we define V by V = WT X. In particular, if W = XA for some matrix A

then R′ can be calculated by R′ = Y
(

K − (KA)(KA)T
)

Y , where K = XT X.

The significance of this result is that it shows it is possible to use existing
SVM code to extract a sequence of orthogonal margin maximizing hyperplanes
just by transforming the matrix R. This proposition is given extra weights as it
shows that it is possible to apply the kernel mapping idea to MMDA. This will
be considered in more detail in Section 4.
4 We omit the proofs where needed throughout the paper due to a lack of space.



3.2 The Direct Method

The deflation approach requires O(n2) calculations when calculating the trans-
formed matrix R′. The method we consider in this section avoids this at the price
of slightly increasing the dimensionality of the quadratic programming problem.

Let us define the maximum margin separation problem with orthogonality
constraint (MMSO problem) as follows: Let u be a d-dimensional vector: u ∈ R

d.
The MMSO problem parameterized by (X, y,C, u) is to find w ∈ R

d, b ∈ R and
ξ = (ξ1, . . . , ξn) ∈ R

n such that

1

2
‖w‖2

2 + C

n
∑

i=1

ξi → min s.t.

yi(w
T xi + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , n,

uT w = 0.

(6)

Let H = H(u,0) be a hyperplane with normal u ∈ R
d (we assume ‖u‖2 = 1

as before) and bias 0. Let X ′ = (x′

1, . . . , x
′

n) be the matrix whose columns are
composed of the xi vectors projected onto H: x′

i = xi − (uT xi)u as before. The
following proposition shows the equivalence of the solutions of MMSO problem
and the solutions obtained using the deflation approach:

Proposition 3 Let C have a fixed positive value. Given the data (X, y) and the

hyperplane H with normal u satisfying ‖u‖2 = 1 and bias 0, the following holds:

Let X ′ denote the data projected onto the hyperplane H. Then the solutions of

the MMS problem (X ′, y, C) and the MMSO problem (X, y,C, u) coincide.

According to this last proposition, we obtain equivalent solutions to those got-
ten using the deflation approach when orthogonality constraints are added to the
MMS problem. It is readily seen that the proposition remains true when the num-
ber of orthogonality constraints – r, say – is bigger than one. The corresponding
MMSO problem will be denoted by (X, y,C, U), where U = (u1, . . . , ur) is the
matrix of vectors that are used to define the orthogonality constraints.

It is not difficult to prove that the solution of an MMSO problem (X, y,C, U)
may be obtained by solving the following dual quadratic programming problem:

−
1

2

(

α⊤Y KY α + γ⊤UT Uγ
)

+ α⊤1 + γ⊤UT XY α → max

such that yT α = 0, 0 ≤ α ≤ C1.

(7)

Since the number of columns of U is r, the dimensionality of γ will also be r,
and hence the number of variables in the above quadratic programming problem
will be n + r.

The direct method works as follows: Given the data (X, y,C), let (w1, b1) be
the solution of the MMS problem (X, y,C). Assuming that the solution vectors
(w1, b1), . . . , (wr−1, br−1) have already been computed, (wr, br) is obtained as the
solution of the MMSO problem (X, y,C,Wr−1), where Wr−1 = (w1, . . . , wr−1).



Now we will show (i) that the dual MMSO optimization problem (X, y,C,Wr)
can be put into a form where the dependence on X is only through the dot
product matrix K = XT X and (ii) that the matrices involved in the dual
MMSO optimization problem can be computed in an incremental manner in
time O(mn), where m is the number of non-zero elements of α(r). We know
that the vectors in Wr lie in the span of X: wi = Xα(i). Therefore Wr = XAr

where Ar = (α(1), . . . , α(r)). Hence, WT
r Wr = AT

r KAr and WT
r XY = AT

r KY .
So WT

r Wr = [Ar−1, α(r)]T K[Ar−1, α(r)], where the subblocks can be computed
by AT

r−1KAr−1, AT
r−1α

(r), (α(r))T Ar−1 and (α(r))T Kα(r), respectively. Further,

WT
r XY = AT

r KY and hence (WT
r XY )T = (Y KAr−1, Y Kα(r)). Thus the direct

method may be computationally cheaper than the deflation approach when the
value of m (the number of support vectors) obtained in step r is much smaller
than the number of data points.

4 Non-linear Feature Extraction

It is often the case that the problem of extracting relevant features can be made
substantially easier when the data is mapped into an appropriate high dimen-
sional space by some non-linear mapping φ and linear methods are applied to the
transformed data. If the algorithm is expressible in terms of dot products and if
the non-linear mapping φ : R

d → H is such that the dot products of the images
of any two points x and y under φ can be computed as a function of x and y only
and in poly(d)-time without explicitly calculating φ(x) or φ(y) then the algo-
rithm remains tractable, regardless of the dimensionality of H. This allows us to
consider very high or even infinite dimensional image spaces H. We may as well
start by choosing a symmetric positive definite function k : R

d ×R
d → R, called

the kernel function (see e.g. [5]). Then the closure of the linear span of the set
{ k(x, ·) |x ∈ R

d } gives rise to a Hilbert space H where the inner product is de-
fined such that it satisfies 〈k(x1, ·), k(x2, ·)〉 = k(x1, x2) for all points x1, x2 ∈ R

d

[13]. The choice of k automatically gives rise to the mapping φ : R
d → H defined

by φ(x) = k(x, ·). This is called the kernel mapping idea [1, 15, 19].
It is clear that the kernel mapping idea can be used to obtain an efficient non-

linear version of MMDA too: Firstly, the MMS problem at the heart of MMDA is
actually the problem solved by SVMs, which itself builds on the kernel mapping
idea [5]. It is well known that the MMS problem can be efficiently solved in
the H feature space. However, for the sake of completeness, we shall briefly
describe how to ‘kernelize’ the MMS problem. The input patterns X appear in
Equation (4) only through the dot product matrix XT X. Hence, defining the
matrix K by

Kij = k(xi, xj), 1 ≤ i, j ≤ n (8)

and replacing XT X in Equation (4) by K, we obtain a quadratic programming
problem such that (if α denotes its solution) w(·) =

∑n

i=1 αik(xi, ·) and b = αT 1
is the solution of the MMS problem (Φ, y, C), where Φ = (φ(x1), . . . , φ(xn)). Now
assuming that r directions W = (w1, . . . , wr) have already been determined, the
(r + 1)th direction can be computed as the solution of the dual MMS problem



Table 1. The characteristics of datasets used in the experiments. In the cases marked
by * 10-fold class-balanced cross-validation was used to measure performances.

Dataset # classes # attribs # train # test

Bupa 2 7 699 *
Pima 2 8 768 *
Iono 2 34 351 *

Heart 2 13 303 *
DNA 3 181 2000 1186

Satimage 6 36 4435 2000
Optdigits 10 64 3823 1797

with R replaced by R′, where R′ is defined in Proposition 2. Since W = ΦA for
an appropriate matrix A (the jth column of A is the solution of the jth dual
subproblem) and Φ = (φ(x1), . . . , φ(xn)), R′ can be computed by Proposition 2,
where K is now defined by (8). It was also found that the dual of the MMSO
problem can be expressed in terms of XT X when W lies in the span of X. Hence
the dual of the MMSO problem can also be expressed using K only, and thus it
can be solved efficiently, regardless of the dimensionality of H.

Finally, rewriting (3) in terms of the kernel function we find that the ith
component of the feature extraction mapping can be evaluated using

fi(x) =
n

∑

j=1

α
(i)
j k(xi, x), (9)

where α(i) is the solution of the ith dual subproblem. Eq. (9) follows directly from

wi(·)=
∑n

j=1 α
(i)
j k(xi,·) and the fact that fi(x)=〈wi, φ(x)〉=

∑n

j=1 α
(i)
j 〈φ(xi), φ(x)〉.

5 Experimental Results

In the first experiment we sought to demonstrate the visualization capability of
MMDA. We used the Wine dataset from the UCI machine learning repository [4]
which has 13 continuous attributes, 3 classes and 178 instances. We applied PCA,
LDA and MMDA to these data sets. Two dimensional projections of the data
are shown in Figure 2. In the case of PCA and LDA, the data is projected onto
the eigenvectors corresponding to the two largest eigenvalues. Since MMDA is
defined for binary classification problems, with multi-class problems we need to
group certain classes together. In this example the first direction is obtained by
grouping classes 2 and 3 together into a single class, while the second direction
is obtained by grouping classes 1 and 3 together. It can be seen that for both
LDA and MMDA the data became separable in the projection space. It was
also noticed that the margin of separation is larger for the case of MMDA, as
expected. Note that the size of the margin can be controlled to some extent by
the parameter C. For this figure we used C = 1 and the data was centered and
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Fig. 2. Scatter plot of wine data projected onto a two-dimensional subspace. The upper
left subfigure shows the projection onto the first two attributes, while the other three
show the results of a PCA, LDA and MMDA transformation, respectively.

scaled to have unit variance (this transformation was applied in all of our other
experiments as well). Actually, the data is not linearly separable in the case of
the PCA projection.

Next we investigate whether MMDA can estimate useful subspaces that pre-
serve information necessary for the classification task. For this we ran MMDA
on a number of binary classification problems. We changed the number of di-
mensions of the estimated subspace and measured the classification accuracy
that could be achieved by projecting data on the extracted subspace. This ex-
periment was run with both the linear and kernelized versions of MMDA. Since
there is obviously no optimal classifier we decided to estimate the quality of the
extracted subspace by training an artificial neural network (ANN) classifier on
the projected data. The ANN was trained for a fixed number of iterations using
batch gradient descent with a constant learning rate. There is one hidden layer
and the number of hidden nodes is three times the number of inputs. Our exper-
iments showed that, on the datasets used, this method is competitive with the
results of SVMs. We chose to combine ANNs with linear feature extraction since
(i) we wanted to keep the algorithms simple and since (ii) the test speed of the re-
sulting composite classifier was then usually very high. High classification speed
is important for some applications like OCR. SVMs need special postprocessing
to achieve comparably high speeds, therefore we decided to use ANNs.

The characteristics of the datasets used in this experiment are shown in
Table 4, while the results are presented in Figure 3. The results labeled ’original’
were obtained using an ANN trained on the original, untransformed data. It may
be seen that for a number of datasets very good classification rates are achieved
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Fig. 3. Accuracies achieved by training a neural network on the subspace extracted by
(K-)MMDA shown for 4 dataset. The figures in the top-to-down and left-to-right order
are results obtained for the datasets called Bupa, Pima, Ionosphere and Heart Disease.

with only a few features. Also, in certain cases performance drops when the
dimensionality of the subspace is increased.

Next, we tested the performance of the method on a number of larger multi-
class problems. For multi-class problems we used the “one vs. all” approach:
basically when the number of classes wa m we ran (K-)MMDA m times with
one class against all the others. We chose this approach for its simplicity. This
is probably a suboptimal approach, though our initial experiments with output-
coding suggests that accuracies obtained this way are quite good.5 In this case
we tested the interaction of MMDA with several classifiers. These were the ANN
introduced earlier, support vector machines with the linear kernel and C4.5 [16].
The results for the three datasets are shown in Figure 4. For comparision we also
included the results obtained with ‘no feature extraction’, PCA and LDA. For
the datasets DNA and Optdigits we got competitive results, but for Satimage
the result for the tested cases were worse than those obtained with the other
methods tested. In particular, in the case of Satimage all feature extractors
yielded worse results than those using no feature extractor. We conjecture that
the optimal subspace for Satimage might be just the (untransformed) space of
input patterns.6

5 Note that we lose pairwise orthogonality (directions extracted for different subprob-
lems are not necessarily orthogonal). In the future we plan to investigate the case
when pairwise orthogonality is enforced. Note here that as a kernel for K-MMDA
fourth order cosine kernels were used.

6 In these experiments K-MMDA was implemented using a Gauss-Seidel iteration (or
the Adatron) and (without loss of generality) we set b = 0.
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Fig. 4. The interaction of classifiers and feature extractors. The results for K-MMDA
are shown. The label KOA< i > means that K-MMDA was run in a one-vs-all manner,
and for each subproblem where i is the number of directions extracted per subproblem.

6 Discussion and Conclusions

One common feature of PCA, LDA and SDA is that they require finding a
number of principal eigenvectors of a matrix whose dimension scales with the
dimensionality of the input space in the linear case, and scales with the number
of input patterns in the non-linear case. Our method requires the solution of con-
strained quadratic optimization problems. As a result, in the case of non-linear
feature extraction our method extracts sparse solutions, whilst the kernelized
versions of PCA, LDA and SDA extract dense solutions (when no additional
‘tricks’ are used). The maximum number of features derived using LDA is actu-
ally the minimum of the dimensionality of the space and the number of classes
minus one. For high dimensional spaces with a few classes this limits the use
of LDA [12]. Unlike the standard LDA with (linear) MMDA we can extract as
many features as the dimensionality of the pattern space (feature space) allows.

Non-linear MMDA should benefit more from the margin maximizing idea
than the linear version as the non-linear version typically works in very high
dimensional (sometimes infinite dimensional) feature spaces. This was partially
confirmed by our experiments where, for certain datasets, K-MMDA was shown
to give excellent results.



In summary, our experiments so far have shown that MMDA can indeed
compete with other alternative feature extraction methods. One nice aspect of
MMDA is that it can be implemented on top of existing SVM software. Therefore
we believe that the proposed method will be a useful tool for researchers using
machine learning. In the future we plan to investigate the properties of MMDA
more thoroughly (e.g. in multi-class problems). Extensions that make use of
different norms penalizing w may also be of interest.
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