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Abstract: Classifier combinations are effective techniques for difficult pattern recognition problems such as speech
recognition where the combination of differently trained classifiers can produce a more robust phoneme classi-
fication on noisy datasets. In this paper we investigate traditional linear combination schemes (e.g. arithmetic
mean and least squares methods), and propose a new combiner based on the Analytic Hierarchy Process
(AHP), a method frequently applied in mathematical psychology and multi-criteria decision making. In addi-
tion, we experimentally compare the applicability of these linear combination schemes using neural network
classifiers on a speech recognition framework and two test sets from the UCI repository.

1 Introduction

In pattern recognition problems (Jain et al.,
2000)(Vapnik, 1998)(Duda et al., 2001) the main aim
is to construct a classifier (or inducer) in order to
model the behavior of a system. For each pattern of
a pattern space the classifier has to select a class label
from the set of available labels. The construction of a
classifier (i.e. the learning process) is based on a set
of labelled examples, and strongly depends on prior
knowledge about the pattern space and the character-
istics of the given examples. Given infinite training
data, consistent classifiers approximate the Bayesian
decision boundaries to arbitrary precision, therefore
providing a similar generalization. However, often
only a limited portion of the pattern space is avail-
able or observable. Given a finite and noisy data set,
different classifiers typically provide different gener-
alizations. It is thus necessary to train more networks
when dealing with classification problems to ensure
that a good model or parameter set is found. However,
selecting such a classifier is not necessarily the ideal
choice since potentially valuable information may be
wasted by discarding the results of the other classi-
fiers. In order to avoid this kind of loss of informa-
tion, the output of all available classifiers should be
examined for the final decision. This approach is par-
ticularly useful for difficult problems such as those
that involve a large amount of noise.

A fair number of combination methods have been
proposed in the literature (Xu et al., 1992) which
have proved effective in improving classifier perfor-
mance. In this paper we focus on linear combina-
tion schemes, especially averaging techniques. Ex-
perimental studies have shown that linear classifier
combinations can improve the recognition accuracy.
Tumer and Ghosh showed that combining networks
using single averaging reduces the variance of the ac-
tual decision boundaries around the optimum bound-
ary (Tumer and Ghosh, 1996). Later Fumera and Roli
extended the theoretical framework for the weighted
averaging rule (Roli and Fumera, 2002). However,
these theoretical explanations apply very restrictive
assumptions, hence they cannot show the real perfor-
mance of the combiner. To improve the accuracy of
the averaging techniques, we propose a new combi-
nation method based on the Analytical Hierarchy Pro-
cess, and demontrate that it may produce a more ro-
bust classification performance in tests

The paper is organized as follows. In the next sec-
tion we give a brief overview of linear combination
schemes, including averaging techniques, and exam-
ine the theoretical background of these systems. The
third section introduces the Analytic Hierarchy Pro-
cess and shows utilization facilities provided in com-
bination frameworks. The experimental section then
compares the performance of various linear schemes
on different database and classifier sets. Finally, we
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give some brief conclusions and ideas for future re-
search.

2 Linear Classifier Combinations
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Figure 1: General parallel combination scheme

Combiners aggregate the outputs of different clas-
sifiers to make a final decision. This aggregation de-
pends on the kind of information that the individual
classifiers can supply. From this viewpoint the classi-
fication methods can be grouped into three main cat-
egories:

1. Measurement or Confidence. The classifier can
model probability values for each class label. Let
f

j
i (x) denote the output of classifier Cj for class i

and pattern x. The linear combination method can
be described by the formula

f̂i(x) =

N
∑

j=1

wjf
j
i (x), (1)

where f̂i(x) is the combined class conditional
probability, and wj is the weighting factor of clas-
sifier Cj . The final decision can be obtained by se-
lecting the class with the greatest probability, in ac-
cordance with the Bayesian decision principle.

2. Ranking. The classifier can produce a list of class
labels in the order of their probabilities. The com-
bined position ĝi is then computed via the formula

ĝi(x) =

N
∑

j=1

wjg
j
i (x), (2)

where g
j
i (x) is the position of the label i in the clas-

sification result of pattern x obtained by the classi-
fier Cj . With the selection of a proper monotonic
decreasing function u, and

f
j
i (x) = u(gj

i (x)), (3)

the ranking-type combination can be reduced to the
confidence-type scheme.

3. Abstract. The classifier supplies only the most
probable class label. In this case the combination
relies on the majority voting formula

L̂(x) = arg max
i

∑

Lj(x)=i

wj , (4)

where Lj(x) is the index of the class label calcu-
lated for pattern x. Taking the selection of f

j
i (x)

as

f
j
i (x) =

{

1 Lj(x) = i
0 otherwise (5)

leads to the reformulation of voting as a
confidence-type combination much like that for the
ranking type.

As we have shown, the output of classifiers belonging
to the Ranking or Abstract class can be transformed
to class conditional probability values. Therefore,
in the following section we shall deal only with the
confidence-type combination, and expect the combin-
ers to supply the class conditional probabilities.

We commence our study of linear combinations
with a theoretical investigation, and then show how
to apply them in practice.

2.1 Theoretical investigation

As mentioned previously, the output of the classi-
fiers are expected to approximate the corresponding
a posteriori probabilities if they are reasonably well
trained. Thus the decision boundaries obtained using
this kind of classifier are close to Bayesian decision
boundaries. Tumer and Ghosh developed a theoretical
framework for analyzing the averaging rule of linear
combinations (Tumer and Ghosh, 1996). Later Roli
and Fumera extended this concept by examining the
weighted averaging rule (Roli and Fumera, 2002).

We shall focus on the classification performance
near these decision boundaries. Consider the bound-
ary between class i1 and i2. The output of the classi-
fier is

fi(x) = pi(x) + εi(x) (6)

where pi(x) is the real a posteriori probability of class
i, and εi(x) is the estimation error. Let us assume
that the class boundary xb obtained from the approxi-
mated a posteriori probabilities

fi1(xb) = fi2(xb) (7)

are close to the Bayesian boundaries x∗, i.e.

pi1(x
∗) = pi2(x

∗), (8)
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for boundary between class i1 and i2. Additionally
assuming that the estimated errors εi(x) on different
classes are independently and identically distributed
(i.i.d.) variables with zero mean, Tumer and Ghosh
showed that the expected error of classification can
be expressed as:

E = EBayes + Eadd, (9)

where EBayes is the error of a classifier with the cor-
rect Bayesian boundary. The added error Eadd can
be expressed as:

Eadd =
sσ2

b

2
, (10)

where σ2
b is the variance of b,

b =
εi1(xb) − εi2(xb)

s
, (11)

and s is a constant term depending on the derivatives
of the probability density functions at the optimal de-
cision boundary.

Let us consider the effect of combining multiple
classifiers. We shall deal only with linear combina-
tions, so we have the following combined probabili-
ties:

f̂i(x) =

N
∑

j=1

wjf
j
i (x), (12)

where f
j
i denotes the output of the classifier Cj for the

class i. Assuming normalized weights, i.e.

N
∑

j=1

wj = 1, wj ≥ 0 (13)

we have that

f̂i(x) = pi(x) + ε̂i(x), (14)

where

ε̂i(x) =
N

∑

j=1

wjε
j
i (x) (15)

Let us compute the variance of b̂, where

b̂ =
ε̂i1 − ε̂i2

s
. (16)

Assuming that ε
j
i (x) are i.i.d. variables with zero

mean and variance σ2
εj , the errors of different classi-

fiers on the same class are correlated, while on differ-
ent classes they are uncorrelated.

Cov(εm
i1

(xb), ε
n
i2

(xb)) =

{

ρmn when i1 = i2
0 otherwise ,

where ρmn denotes the covariance between the errors
of classifier Cm and Cn for each class. Expanding the
tag σ2

ε in Eq. (10), we find that

Êadd =
1

s

N
∑

j=1

w2
j σ2

εj

+
1

s

∑

m6=n

wmwnρmn.

Expressed in terms of additional errors of the classi-
fiers

Êadd =
1

s

N
∑

j=1

w2
j E

j
add

+
1

s

∑

m6=n

wmwnρmn,

where the term E
j
add denotes the added error of the

classifier Cj . In the case of uncorrelated estimation
errors (i.e. when ρmn = 0), this equation reduces to

Êadd =

N
∑

j=1

w2
j E

j
add, (17)

which leads to the following optimal values for w:

wj = c
1

E
j
add

, (18)

where c is a normalization factor. With equally per-
forming classifiers, that is when all the errors E

j
add

have the same value

E
j
add = Eadd, j = 1, . . . , N, (19)

we obtain the Simple Averaging rule:

wj =
1

N
, (20)

which results in the following error value:

Êadd =
1

N
Eadd. (21)

This formula shows that, under the conditions men-
tioned, linear combinations reduce the error of the
individual classifier. Considering correlated errors,
however, does not lead to a simple general expression
for optimal values of weights, and other methods are
required to estimate the optimal parameters.

2.2 Construction

To achieve the best combination performance the pa-
rameters of the combiner can be trained on a selected
training data set. The form of linear combinations we
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deal with is quite simple (see Figure 1), the trainable
parameters being just the weights of classifiers. Thus
the various linear combinations differ only in the val-
ues of these factors. In the following we give some
examples of methods commonly employed, and in the
next section we propose a new method for computing
these parameters.

1. Simple Averaging. In this simplest case, the
weights can be selected so they have the same
value:

wj =
1

N
. (22)

As mentioned before, this selection is optimal
when all the classifiers have a very similar perfor-
mance, and all the assumptions mentioned in Sec-
tion 2.1 hold.

2. Weighted Averaging. Experiments show (Roli and
Fumera, 2002) that Simple Averaging can be out-
performed when selecting weights to be inversely
proportional to the error rate of the corresponding
classifier:

wj =
1

Ej

, (23)

where Ej is the error rate of the classifier Cj , i.e.
the ratio of the number of correctly classified pat-
terns and total number of patterns on a selected data
set for training the combiner. This rule (a more gen-
eral version of the Simple Averaging rule) is em-
ployed in order to handle the combination of un-
equally performing classifiers.

3. Least-squares methods. To calculate the weights
wj one can take those values that minimize the dis-
tance between the computed and estimated class
conditional probabilities:

min
w

∑

x∈X

l
∑

i=1





N
∑

j=1

wjf
j
i (x) − pi(x)





2

, (24)

where
X = {x1, . . . , xm}

is the training set of patterns for the combination,
and pi(x) is the estimated class conditional proba-
bility function. In the case of supervised learning
the class labels are available for all the training pat-
terns, but there is no direct way of comparing this
information with computed a posteriori probabili-
ties. Assuming a Bayesian decision, the pattern x
has the label L(x) = i when pi(x) ≥ pj(x) for all
i 6= j. Let us approximate pi(x) by

pi(x) =

{

1 if L(x) = i
0 otherwise

, (25)

or calculate it from the error correlation matrix of
the n combiners (Perrone and Cooper, 1993). Us-
ing matrix notations the problem described in Eq.

(24) can be expressed as:

min
w

(Aw − b)T (Aw − b), (26)

where
aj,(mi+k) = f

j
i (xk),

bmi+k = pi(xk),

This optimization problem leads to the following
linear equation:

AT A w = AT b, (27)

which provides a way of determining the weighting
factors.

3 The Analytic Hierarchy Process

Analytic Hierarchy Process is an intuitive and
efficient method for multi-criteria decision-making
(MCDM) applications (Saaty, 1980). The structure
of a typical decision problem (see Fig. 2) consists of
alternatives and decision criteria. Each alternative can
be evaluated in terms of the decision criteria and, in
the case of multilevel criteria, the relative importance
(or weight) of each criterion can also be estimated.

Goal

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Criterion CCriterion A Criterion B

Figure 2: A simple application of AHP

In the following we give a brief summary of the
fundamental properties of the AHP, and propose a
combination method based on it.

3.1 Mathematical model

The first step of AHP is to divide the decision prob-
lem into sub-problems, which are structured into hi-
erarchy levels. The number of levels depends on the
complexity of the initial problem. The leaves contain
the possible alternatives and the inner nodes represent
the criteria. To compute the importance of possible
choices, pairwise comparison matrices are utilized for
each criterion. The element aij of the comparison ma-
trix A represents the relative importance of choice i
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against the choice j, implying that the element aji is
the reciprocal of aij . Let the importance value v of
choice y be expressed as a linear combination of the
importance values for each applied criterion:

v(y) =
n

∑

j=1

wjv(yj), (28)

where wj is the importance of choice y with respect
to the criterion yj . Using comparison matrices AHP
propagates the importance values of each node from
the topmost criteria towards the alternatives, and se-
lects the alternative with the greatest importance value
as its final decision.

Let us now focus on the computation of the weights
w for a selected criterion. The elements of a given
pairwise comparison matrix approximate the relative
importance of the choices, thus

aij ≈
wi

wj

, (29)

where the elements of the unknown vector w are the
importance values. A matrix M is called consistent if
its components satisfy the following equalities:

mij =
1

mji

, (30)

and
mij = mikmkj ∀ i, j, k. (31)

If A is not consistent, it is not possible to find a vector
w that satisfies the equation

aij =
wi

wj

. (32)

Now let us define the matrix of weight ratios by

W =















w1

w1

w1

w2

w1

w3

· · · w1

wn
w2

w1

w2

w2

w2

w3

· · · w2

wn
w3

w1

w3

w2

w3

w3

· · · w3

wn

...
...

...
. . .

...
wn

w1

wn

w2

wn

w3

· · · wn

wn















, (33)

or, in matrix notation,

W = wwT . (34)

Note that Eqs. (30) and (31) hold for the matrix W :

wij =
wi

wj

=
wi

wk

wk

wj

= wikwkj , (35)

hence the matrix of weight ratios is consistent.
Because the rows of matrix W are linearly depen-

dent, the rank of the matrix is 1, and there is only
one nonzero eigenvalue. Knowing that the trace of
a matrix is invariant under similarity transformations,
the sum of diagonal elements is equal to the sum of

eigenvalues, which implies that the nonzero eigen-
value λmax equals the number of the rows:

λmax = n. (36)

It is straightforward to check that the vector w is an
eigenvector of matrix W corresponding to the maxi-
mum eigenvalue

(Ww)i =

n
∑

j=1

Wijwj

=
n

∑

i=1

wi

wj

wj =
n

∑

j=1

wi

= nwi.

The aim of AHP is to resolve the weight vector w
from a pairwise comparison matrix A, where the ele-
ments of A corresponds to the measured or estimated
weight ratios. Following Saaty we shall assume that

aij > 0, (37)

and
aij =

1

aji

. (38)

From matrix theory it is known that a small per-
turbation of the coefficients implies a small perturba-
tion of the eigenvalues. Hence we still expect to find
an eigenvalue close to n, and select the elements of
the corresponding eigenvector as weights. It can be
proved that

λmax ≥ n,

and the matrix A is consistent if and only if λmax =
n. A way of measuring the consistency of the ma-
trix A is by defining the consistency index (CI) as the
negative average of the remaining eigenvalues:

CI =

∑

λ<λmax

λ

n − 1
=

λmax − n

n − 1
(39)

3.2 Combination using AHP

As mentioned above, AHP provides the following so-
lution for the problem of linear MCDM systems:

v(y) =

n
∑

i=1

wiv(yi),

where the importance value of the choice is the lin-
ear combination of the importance values of the direct
criteria. In linear classifier combinations the com-
bined class conditional probabilities are computed as
weighted sums of the probability values from each
classifier, so

fi(x) =

N
∑

j=1

wjf
j
i (x).
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Noting the similarities between these two methods,
it is clear that, by applying pairwise comparisons on
classifiers performance, AHP provides a way of com-
puting the weights of inducers in classifier combina-
tions. Let us calculate the element aij of the com-
parison matrix as the quotient of classification perfor-
mance on a selected test data set:

aij =
1

Ei

1
Ej

=
1

aji

, (40)

where Ei is the classification error of classifier Ci.
If all the performance errors are measured on the
same test data set, the comparison matrix A is consis-
tent, and the elements of the eigenvector whose cor-
responding eigenvalue is N , that is

wi =
1

Ei

, (41)

are the same those as generated by weighted averag-
ing. However, this method allows us to make pairwise
comparisons of different inducers applied on different
(e.g. randomly generated) test sets, taking advantage
of the stabilizing effect of AHP. This leads to more a
robust classification performance, especially in noisy
environments, as shown in the experimental section.

4 Experiments

In this section we describe our experiments for
comparing the performance of averaging combiners
and our AHP-based combiner.

4.1 Evaluation Domain

In the experiments three data sets were employed:
a data-set used in our speech recognition sys-
tem, and two other datasets (letter and satim-
age) originating from the statlog/UCI repository.
(http://www.liacc.up.pt/ML/statlog)

1. Speech data set (Kocsor and Tóth, 2003). The
database is based on recorded samples taken from
160 children aged between 6 and 8. The ratio of
girls and boys was 50% - 50%.The speech sig-
nals were recorded and stored at a sampling rate
of 22050 Hz in 16-bit quality. Each speaker uttered
all the Hungarian vowels, one after the other, sep-
arated by a short pause. Since we decided not to
discriminate their long and short versions, we only
worked with 9 vowels altogether. The recordings
were divided into a train and a test set in a ratio of
50% - 50%. There are numerous methods for ob-
taining representative feature vectors from speech
data, but their common property is that they are
all extracted from 20-30 ms chunks or frames of

the signal in 5-10 ms time steps. The simplest
possible feature set consists of the so-called bark-
scaled filterbank log-energies (FBLE). This means
that the signal is decomposed with a special filter-
bank and the energies in these filters are used to
parameterize speech on a frame-by-frame basis. In
our tests the filters were approximated via Fourier
analysis with a triangular weighting. Altogether
24 filters were necessary to cover the frequency
range from 0 to 11025 Hz. Although the result-
ing log-energy values are usually sent through a co-
sine transformation to obtain the well-known mel-
frequency cepstral coefficients (MFCC), we aban-
doned it because, as we observed earlier, the learner
we work with is not sensitive to feature correlations
so a cosine transformation would bring no signifi-
cant improvement.

2. Letter Data Set. The objective of the Data set is to
identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital
letters in the English alphabet. The character im-
ages were based on 20 different fonts and each let-
ter within these 20 fonts was randomly distorted
to produce a file of 20,000 unique stimuli. Each
stimulus was converted into 16 primitive numeri-
cal attributes (statistical moments and edge counts)
which were then scaled to fit into a range of inte-
ger values from 0 to 15. We typically trained on
the first 16000 items and then used the resulting
model to predict the letter category for the remain-
ing 4000.

3. Satimage Data Set. One frame of Landsat MSS im-
agery consists of four digital images of the same
scene in different spectral bands. Two of these are
in the visible region (corresponding approximately
to green and red regions of the visible spectrum)
and two are in the (near) infra-red. Each pixel is
a 8-bit binary word, with 0 corresponding to black
and 255 to white. The spatial resolution of a pixel
is about 80m x 80m. Each image contains 2340 x
3380 such pixels. The database is a (tiny) sub-area
of a scene, consisting of 82 x 100 pixels. Each line
of data corresponds to a 3x3 square neighborhood
of pixels completely contained within the 82x100
sub-area. Each line contains the pixel values in the
four spectral bands (converted to ASCII) of each of
the 9 pixels in the 3x3 neighborhood and a num-
ber indicating the classification label of the central
pixel. The number of possible class labels for each
pixel is 7. We trained on the first 4435 patterns of
the database and selected the remaining 2000 pat-
terns for testing.
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4.2 Evaluation Method

During the experiments we compared the perfor-
mance of 6 different combiners applied on each of the
3 databases. For each of the databases we trained 3-
layered neural networks with different structures, and
selected 5 subsets of classifiers, denoted by Set1 to
Set5.

In the case of the speech and letter databases we
trained networks setting the number of neurons in the
hidden layer to 5, 10, 20, 40, 80, 160, and 320. Ta-
ble 1 shows the construction of classifier sets. The
columns refer to the number of hidden neurons, and
the rows show which networks belong to the selected
classifier sets.

5 10 20 40 80 160 320
Set1 x x x x x x x
Set2 x x x x x x
Set3 x x x x x
Set4 x x x x
Set5 x x x

Table 1: Classifier sets for the speech and letter
databases.

The satimage database contains only 7 classes. In
this case we trained networks with hidden layer size
selected to 2, 5, 10, 20, 40, 80, and 160. The corre-
sponding classifier selection is displayed in Table 2.

2 5 10 20 40 80 160
Set1 x x x x x x x
Set2 x x x x x x
Set3 x x x x x
Set4 x x x x
Set5 x x x

Table 2: Classifier sets for the satimage database.

The experiments compared the performance of
linear combination schemes with different methods
for acquiring the proper weights. We examined 2
schemes of Averaging : SA and WA (i.e. simple and
weighted) averaging, and 4 schemes of AHP. To cal-
culate the pairwise comparison matrices needed for
the AHP method, we took the quotient of classifica-
tion errors of the two competing networks on a ran-
dom test set generated by bootstrapping (resampling
the training data set with replacement) of the training
set. In accordance with the size of the generated test
set we had 4 AHP schemes, AHP1 to AHP4, setting
the size of each to 50, 100, 200 and 400, respectively.
With the WA combiner, the original training set was
selected for the calculation of the weights.

4.3 Results and Discussion

Set1 Set2 Set3 Set4 Set5
SA 8.52 9.26 9.95 9.77 8.80
WA 8.66 9.21 9.91 9.81 8.75
AHP1 8.66 8.94 9.44 10.05 8.80
AHP2 8.56 9.12 9.72 10.19 8.80
AHP3 8.61 9.21 9.49 9.58 8.70
AHP4 8.61 9.31 9.55 9.07 8.70

Table 3: Classification errors [%] on the Speech
database (Error without combination: 12.92%)

Set1 Set2 Set3 Set4 Set5
SA 8.70 8.34 7.88 7.26 7.78
WA 7.56 7.64 7.64 7.06 7.68
AHP1 6.84 7.26 7.04 6.76 7.48
AHP2 6.74 6.90 6.98 6.82 7.56
AHP3 6.67 6.94 6.96 6.80 7.58
AHP4 6.78 7.00 6.88 6.82 7.54

Table 4: Classification errors [%] on the Letter
database (Error without combination: 13.78%)

Set1 Set2 Set3 Set4 Set5
SA 10.95 10.35 10.35 10.00 10.05
WA 10.50 10.35 10.45 9.90 10.00
AHP1 10.05 9.95 10.05 9.60 9.30
AHP2 10.00 9.70 9.45 9.50 9.50
AHP3 9.80 9.50 9.50 9.20 9.45
AHP4 9.90 9.55 9.75 9.30 9.50

Table 5: Classification errors [%] on the Satimage
database. (Error without combination: 12.05%)

Tables 3, 4, and 5 show the results of the experi-
ments. Columns represent the various classifier sets,
while rows show the classification errors measured
using the selected combination of the corresponding
classifier group.

As expected, all the combinations here improved
the generalization performance of the simple clas-
sifier. In almost every case AHP-based combina-
tions outperformed the weighed averaging combina-
tions. However, in some cases SA performed better
than WA and the AHP combiners, showing that the
strong assumptions of the method are not always sat-
isfied (Fumera and Roli, 2003).

The performance of AHP combiners depends on
the size of testing set. When the test sets selected were
too small, the measured accuracy values did not char-
acterize the goodness of the classifiers, and yielded
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wrong combination results. Increasing the size, how-
ever, makes the consistency index (CI) tend to zero,
producing weights that tend to the values calculated
by weighted averaging. Determining the optimal size
of the test set requires further study.

When considering the sensitivity for the selec-
tion of different classifier subsets, the AHP-based
combiner has a behavior similar to that of the WA
method, hence the optimal classifier set can be se-
lected by methods available for the averaging com-
biners (Roli and Fumera, 2002).

Lastly, we should say that the AHP-based combina-
tion scheme is a good tool for making the solution of
the classification problem more accurate and reliable.

5 Conclusion

In this paper we proposed a new linear combination
method, and compared its performance with those
of other combiners. As shown in the experiments,
AHP-based combinations proved an effective gener-
alization of the weighted averaging rule; they outper-
formed the other averaging methods in almost every
case.

Finally, we should mention that resampling tech-
niques may further improve the performance of lin-
ear combinations, hence it is worth investigating
generalizations of the bootstrapped learners Bagging
(Breiman, 1996) and Boosting (Freund, 1990) in fu-
ture work.
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