
Classifier Combination in Speech Recognition

László Felföldi, András Kocsor, and László Tóth

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences and University of Szeged

H-6720 Szeged, Aradi vértanúk tere 1., Hungary
{lfelfold, kocsor, tothl}@inf.u-szeged.hu

http://www.inf.u-szeged.hu/speech

Abstract. In statistical pattern recognition the principal task is to clas-
sify abstract data sets. Instead of using robust but computational expen-
sive algorithms it is possible to combine ’weak’ classifiers that can be em-
ployed in solving complex classification tasks. In this comparative study
we will examine the effectiveness of the commonly used hybrid schemes
- especially those used for speech recognition problems - concentrating
on cases which employ different combinations of classifiers.

1 Introduction

The goal of designing pattern recognition systems is to achieve the best possible
classification performance for the specified task. This objective traditionally led
to the development of different classification schemes for recognition problems
the user would like solved. Experiments shows that although one of the designs
should yield the best performance, the sets of patterns misclassified by the dif-
ferent classifiers do not necessarily overlap. These observations motivated the
relatively recent interest in combining classifiers. The main idea behind it is not
to rely on the decision of a single classifier. Rather, all of the inducers or their
subsets are used for decision-making by combining their individual opinions to
produce a final decision.

A fair number of combination schemes have been proposed in the literature
[3][5][6], these schemes differing from each other in their architecture, the char-
acteristics of the combiner, and the selection of the individual classifiers. From
the analytic viewpoint, there are basically two combination scenarios. In the first
scenario, all the classifiers use the same representation of input patterns, while
in the second scenario each classifier uses its own pattern representation, so the
measurements extracted from the pattern are unique to each classifier.

In this paper we focus on classifier combinations of the first kind, especially
pattern representations commonly used in speech recognition tasks. The paper is
organized as follows. In the first section we give a general overview of combination
schemes, concentrating on their input representation, architecture, and some of
techniques for generating the independent inputs needed for combinations. Then

1

2 László Felföldi, András Kocsor, László Tóth

we derive the commonly used combination rules like the Product and Sum rule.
In the next section we compare the individual classifiers and the associated
hybrid schemes, including the traditional Bagging and Boosting techniques. In
the final section we summarize the main results and conclusions of the paper.

2 Concept of Combination Schemes

2.1 Types of Knowledge Sources

Each inducer has to be capable of assigning one of the classes to a given pattern
xi. The output information from each is sufficient for some types of combiners
(e.g., Majority Voting Rule), but other combiners might need other types of
information from individual classifiers. The types of information required can be
grouped into three main categories:

Abstract: Only the assigned class label ωk is required. Classifiers which only
need this information as input are voting combiners like Bagging and Boosting.

Ranking: Instead of providing just the best class ωk associated with the
given pattern xi, the list of classes is supplied, ranked in order of probability.
This more general information type can be used as input for combiners like the
Borda count rule.

Measurement or Confidence: In the most general case, each of the a
posteriori probabilities p(ωj |xi) are provided. Combiners can aggregate these
probabilities from different inducers and make a final decision. Examples include
combiners which use the measurement information type are Prod, Sum, and Max
Rules.

2.2 Combination Architectures

Various schemes for combining multiple classifiers can be grouped into three
main categories according to their architecture:

Parallel: Each of the inducers are invoked independently, and their results
are then combined by a combiner. The majority of combination architectures in
the literature belong to this category.

Cascading: Individual classifiers are invoked in a linear sequence. The num-
ber of possible classes for a given pattern is gradually reduced as more classifiers
in the sequence are invoked. For the sake of efficiency, inaccurate but cheap clas-
sifiers are considered first, followed by more accurate and expensive inducers.

Hierarchical: Individual classifiers are combined into a structure similar to
that of a decision tree classifier. The tree nodes, however, may now be associated
with complex classifiers requiring a large number of features. The advantage of
this architecture is its high efficiency and flexibility in exploiting the discriminant
power of different types of features.

Classifier Combination in Speech Recognition 3

2.3 The Training Set

A classifier combination is especially useful if the classifiers applied are largely
independent. If this is not already guaranteed by the use of different learning
sets or different learning methods, various re-sampling techniques like rotation
and bootstrapping may be used to artificially create such differences.

Rotation: The original learning set is divided into n disjoint subsets and uses
different unions of n − 1 subsets as training sets. This technique is commonly
used in cross validation during error estimation.

Bootstrapping: A bootstrap sample can be generated by sampling instances
from the training set with replacement, using a specified probability distribution.
Examples include Bagging and Boosting.

Stacking: The outputs of the individual classifiers are used to train the
stacked classifier[11]. The final decision is made based on the outputs of the
stacked classifier in conjunction with the outputs of individual classifiers.

Generating noise: The generated classification model of an unstable classi-
fier strongly depends on existing errors in the training database. Adding artificial
errors is a way of generating a set of more or less independent classifiers, making
it possible to fulfil the requirements of a combiner.

2.4 ”Winner-Takes-All”

Providing there is a set of independent classifiers, a common way of combining
them is to select one with the best behavior on a given test database. During
the classification only the output of the selected classifier is computed, and only
this will affect the resulting decision. This selection is an ”early” combination
scheme widely used in pattern recognition.

3 Integration of Knowledge Sources

Consider a pattern recognition problem where the pattern Z is to be assigned to
one of m possible classes (ω1, . . . , ωm). Let us assume that we have R classifiers,
each representing the given pattern by a different feature vector. Next, denote
this feature vector (employed by the ith classifier) by xi. In the feature space
each class ωk is modelled by the probability density function p(xi|ωk) and its a
priori probability of occurrence P (ωk).

According to Bayesian theory, for given features xi, i ∈ {1, . . . , R} the pattern
Z should be assigned to class ωj with the maximal value of the a posteriori
probability such that

f(xi) = ωj , j = argmax
k

P (ωk|x1, . . . ,xR). (1)

Let us rewrite the a posteriori probability using Bayes’ Theorem. We have

P (ωk|x1, . . . ,xR) =
p(x1, . . . ,xR|ωk)P (ωk)

p(x1, . . . ,xR)
. (2)

4 László Felföldi, András Kocsor, László Tóth

In the latter the unconditional joint probability density can be expressed in
terms of the conditional feature distributions, so that

p(x1, . . . ,xR) =
m∑

j=0

p(x1, . . . ,xR|ωj)P (ωj). (3)

3.1 Product Rule

Let us assume that the probability distributions p(xi, . . . ,xR|ωk) are condition-
ally statistically independent. Then

p(x1, . . . ,xR|ωk) =
R∏

i=0

p(xi|ωk), (4)

and the decision rule

f(xi) = ωj , j = argmax
k

P (ωk)
∏

i

p(xi|ωk), (5)

or in terms of the a posteriori probabilities generated by the respective classifiers

argmax
k

P 1−R(ωk)
∏

i

p(ωk|xi). (6)

3.2 Sum Rule

In some applications it may be appropriate to assume that the a posteriori
probabilities computed by the respective classifiers will not dramatically deviate
from those of the prior probabilities. This is a rather strong assumption but it
may be readily satisfied when the available information is highly ambiguous due
to high level of noise. In such a situation we may assume that the a posteriori
probability can be expressed in the form

P (ωk|xi) = P (ωk)(1 + δki), (7)

where δki � 1. Substituting this for the a posteriori probabilities in (6), we find
that

P 1−R(ωk)
∏

i

P (ωk|xi) = P (ωk)
∏

i

(1 + δki). (8)

If we neglect terms of second and higher order, we can approximate the right-
hand side and obtain the sum decision rule

f(xi) = ωj , j = argmax
k

[
(1 + R)P (ωk) +

∑
i

p(ωk|xi)

]
. (9)

Classifier Combination in Speech Recognition 5

3.3 Max, Min Rule

The decision rules (6) and (9) constitute the basic schemes for combining classi-
fiers. Many commonly used combination strategies can be developed from these
rules after noting that∏

i

P (ωk|xi) ≤ min
i

P (ωk|xi) ≤
∑

i

P (ωk|xi) ≤ max
i

P (ωk|xi). (10)

This inequality suggests that the product and sum combination rules may be
approximated by the max and min operators, where appropriate. These approx-
imations lead to the following:

Max Rule:

f(xi) = ωj , j = argmax
k

[
(1 + R)P (ωk) + R max

i
p(ωk|xi)

]
, (11)

Min Rule:

f(xi) = ωj , j = argmax
k

[
P 1−R(ωk) + R max

i
p(ωk|xi)

]
. (12)

3.4 Median Rule

Note that using the equal prior assumption, the sum rule can be interpreted as
computing the average a posteriori probability. It is well known that a robust
estimate of the mean is the median, so it might be more appropriate to use it as
the basis for the combining procedure. Adopting this leads to the following rule:

f(xi) = ωj , j = argmax
k

med
i

p(ωk|xi). (13)

3.5 Voting Rule

Hardening a posteriori probabilities P (ωk|xi) will produce binary valued func-
tions ∆ki like

∆ki =

{
1 if P (ωk|xi) = max

j
P (ωj |xi)

0 otherwise,
(14)

which results in combination decision outcomes rather than a combination of a
posterori probabilities. Assuming that each a priori probabilities is equal, this
leads to the following decision rule:

f(xi) = ωj , j = argmax
k

∑
i

∆ki. (15)

Note that for each class ωk, the sum on the right hand side of (15) simply counts
the votes received for this hypothesis from each individual classifier.

6 László Felföldi, András Kocsor, László Tóth

3.6 Borda count

Instead of hardening a posteriori probabilities it is possible to use modified prob-
abilities ρki based on ranking information.

ρki =
1
C

∑
j:P (ωj |xi)≤P (ωk|xi)

1 (16)

where C is a normalization constant. This results in the following decision rule:

f(xi) = ωj , j = argmax
k

∑
i

ρki. (17)

3.7 Bagging

The Bagging (Bootstrap aggregating) algorithm[1] votes classifiers generated by
different bootstrap samples (replicates). A bootstrap sample is generated by uni-
formly sampling m instances from the training set with replacement. T bootstrap
samples B1, B2, ..., BT are generated and a classifier Ci is built from each boot-
strap sample Bi. A final classifier C∗ is built from C1, C2, ..., CT whose output
is the class predicted most often by its sub-classifiers (majority voting).

Bagging algorithm

Require: Training Set S, Inducer I
Ensure: Combined classifier C∗

for i = 1 . . . T do
S′ = bootstrap sample from S
Ci = I(S ′)

end for
C∗(x) = argmax

j

∑
i:Ci(x)=ωj

1

For a given bootstrap sample, an instance in the training set will have a
probability 1− (1− 1/m)m of being selected at least once from the m instances
randomly selected from the training set. For large m, this is about 1-1/e =
63.2%. This perturbation causes different classifiers to be built if the inducer is
unstable (e.g. ANNs, decision trees) and the performance may improve if the
induced classifiers are uncorrelated. However, Bagging can slightly degrade the
performance of stable algorithms (e.g. kNN) since effectively smaller training
sets are used for training.

3.8 Boosting

Boosting[9] was introduced by Shapire (1990) as a method for boosting the per-
formance of a weak learning algorithm. Here we will focus on AdaBoost, some-
times called ”AdaBoost.M1”. Like Bagging, the AdaBoost algorithm generates

Classifier Combination in Speech Recognition 7

a set of classifiers and it makes a decision based on their votes. However, beyond
this, the two algorithms substantially differ. The AdaBoost algorithm generates
the classifiers sequentially, while Bagging can generate them in parallel. Ad-
aBoost also changes the weights of the training instances provided as input for
each inducer based on classifiers that were previously built. The final decision is
made using a weighted voting scheme for each classifier, whose weights depend
on the performance of the training set used to build it.

Boosting algorithm

Require: Training Set S of size m, Inducer I
Ensure: Combined classifier C∗

S′ = S with weights assigned to be 1/m
for i = 1 . . . T do

S′ = bootstrap sample from S
Ci = I(S ′)
εi =

∑
xj∈S′:Ci(xj) 6=ωj

weight of xj

if εi > 1/2 then Exit
βi = εi

(1−εi)

for all xj ∈ S′ such Ci(xj) = ωj do
weight of xj = weight of xj · βi

end for
normalize weights of instances to sum 1

end for

C∗(x) = argmax
j

∑
i:Ci(x)=ωj

log
1

βi

The AdaBoost algorithm requires a weak learning algorithm whose error is
bounded by a constant strictly less than 1/2. In the case of multi-class classifi-
cation this condition could be different to guarantee. Some implementations of
AdaBoost makes use of boosting by re-sampling because the inducers employed
are unable to support weighted instances. Using appropriate classifiers one can
try re-weighting, which might work better in practice.

4 Experimental results

4.1 Data-Sets

The various hybrid techniques were compared using a relatively small corpus that
consists of several speakers pronouncing Hungarian numbers. More precisely, 20
speakers were used for training and 6 for testing, and 52 utterances were recorded
from each person. The ratio of male and female speakers was 50%:50% in both
the training and the testing sets. The recordings were made using an inexpensive

8 László Felföldi, András Kocsor, László Tóth

commercial microphone in a reasonably quiet environment, at a sample rate of
22050Hz. The whole corpus was manually segmented and labelled. Because the
corpus contained only numbers, we had occurrences of only 32 phones, which is
approximately two-thirds of the Hungarian phoneme set. Because some of these
labels represented only allophonic variations of the same phoneme, some labels
were fused, and so we actually worked with a set of just 28 labels. We performed
tests as well with two other groupings where the labels were grouped into 11 and
5 classes, respectively, based on phonetic similarity. We had two good reasons
for doing experiments with these gross phonetic classes. First, we could increase
the number of training examples in each class and inspect the effects of this on
the learning algorithms. Second, our speech recognition system has a first-pass
stage in which the segments are classified into gross phonetic categories only.

Hence we had three phonetic groupings, which will be denoted by grp1, grp2,
and grp3 from this point on. With the first grouping, the number of occurrences
of the different labels in the training set was between 40 and 599. This value
was between 120 and 1158 for the second grouping and between 716 and 2158
for the third grouping.

4.2 Features

The trials were performed on five feature sets[7] described later. Because all sets
contained duration information, we do not mention it separately. Set1 consisted
of the MFCC coefficients, because these are the most commonly used features.
To have the chance of studying the usefulness of the cosine transform, we also
carried out tests on the filter bank energies themselves (Set3). By augmenting
Set1 and Set3 with gravity center features, we acquired two new sets, Set2 and
Set4. We hoped that the addition of these phonetics-based features would lead
to a slight improvement. Lastly, the largest set Set5 contains all the features,
that is, filter bank energies, MFCC coefficients, and gravity centers. The same
trials were performed on the three phoneme groupings grp1, grp2, grp3.

4.3 Classifiers

Each of the classifiers used in the experiments was modified so as to make them
capable of providing a posteriori probabilities for each class ωk.

Decision Tree Learner: Our version of DTL used in the experiments is based
on the C4.5 tree learning algorithm[8]. It is able to learn predefined discrete
classes from labelled examples. The result of the learning process is an axis-
parallel decision tree. This means that during the training, the sample space
is divided into subspaces by hyper-planes which are parallel to every axis but
one. In this way, we obtain many n-dimensional rectangular regions that are
labelled by class labels and organized in a hierarchical way so it can be encoded
into a tree. For knowledge representation, DTL uses the ”divide and conquer”
technique, which means that regions are split during learning whenever they

Classifier Combination in Speech Recognition 9

are insufficiently homogenous, and left untouched when they are homogenous.
Splitting is done by axis parallel hyper-planes and, thanks to this, the learning
process is quite fast. Hence the greatest advantage of the method is time com-
plexity. Unfortunately, the simple learning strategy in certain cases results in a
huge number of regions that are needlessly split.

Gaussian Mixture Models: GMM[4] assumes that the class-conditional prob-
ability distribution p(xi|ωk) can be well-approximated by a distribution of the
form

f(xi) =
l∑

j=1

cjN (xi, µj,Cj) (18)

whereN (xi, µj,Cj) denotes the multidimensional normal distribution with mean
µj and covariance matrix Cj, l is the number of mixtures and cj are nonnegative
weighting factors that sum to 1.

As luck would have it, there is no closed formula for the optional parameters
of the mixture model. Normally the expectation-maximization (EM) algorithm
is utilized to find proper parameters, but it guarantees only a locally optimal
solution. This iterative technique is very sensitive to initial parameter values, so
we used k-mean clustering to find a good starting parameter set. Since k-mean
clustering again guarantees only a local optimum, we ran it 15 times with ran-
dom parameters and took the one with the highest log-likelihood to initialize
the EM algorithm. In each case the covariance matrix was made diagonal be-
cause training full matrices would have required much more training data and
computation time.

Support Vector Machines: SVM[10] was developed by Vapnik for binary
classification. It selects a hyperplane with maximal margin to separate points
with different class labels, but prior to that it applies a nonlinear transformation
to map the patterns to a higher dimensional space where the classification is
easier. The problem of nonlinearity is handled by kernel functions which makes
Support Vector Machines a very powerful tool for machine learning.

Artificial Neural Networks: ANNs[2] now count among the conventional
pattern recognition tools, so we will not describe them here. In the trials per-
formed we used the most common feed-forward multi-layer perceptron network
with the back-propagation learning rule. The number of neurons in the hidden
layer was set at three times the number of features (this value was chosen em-
pirically based on preliminary trials). Training was stopped when, for the last
20 iterations, the decrease in the error between two consecutive iteration step
remained below a certain threshold.

k Nearest Neighbor: kNN[4] is a well known classifier used in pattern recog-
nition. Because no rule or decision is made before the actual classification, this

10 László Felföldi, András Kocsor, László Tóth

approach is called lazy learning. Typically, this kind of machine learning has a
very short training time but the classification of new data takes rather a long
time. The storing and processing of millions of examples can also be a serious
handicap. Despite this, being a stable inducer it is a great tool for machine
learning.

4.4 Classification without combination

In the first stage all the classifiers were tested on the same data set. As can be
seen in Table 1, SVM performed the best, and ANN also had good score, but
the other classifiers only produced poor results.

Table 1. Classification errors of the individual classifiers

ANN SVM GMM kNN DTL

g1set1 13.71% 14.01% 21.16% 20.09% 35.58%

g1set2 12.23% 13.71% 24.65% 19.86% 33.75%

g1set3 11.88% 11.76% 26.77% 21.34% 32.80%

g1set4 12.23% 11.82% 25.59% 21.99% 32.09%

g1set5 11.88% 11.41% 24.36% 19.24% 34.22%

g2set1 10.64% 9.93% 18.68% 13.83% 22.10%

g2set2 10.40% 9.69% 21.69% 13.48% 22.46%

g2set3 8.63% 8.22% 18.68% 12.12% 21.75%

g2set4 10.76% 7.92% 18.26% 13.00% 21.45%

g2set5 9.93% 8.16% 20.33% 12.41% 24.76%

g3set1 7.15% 6.03% 11.76% 8.51% 13.38%

g3set2 6.32% 5.56% 11.82% 7.51% 12.71%

g3set3 5.38% 5.61% 10.22% 6.86% 10.87%

g3set4 5.32% 5.14% 10.46% 7.39% 12.00%

g3set5 5.61% 4.96% 10.11% 6.86% 12.35%

4.5 Selecting the Classifier Set

One can expect a different performance depending on which classifiers are com-
bined. To obtain the optimal classifier selection, a different subset of the classi-
fiers was selected for combining with the same method. The subsets were gen-
erated sequentially by inserting the next element from the strictly ordered list
of classifiers into the previous subset. The combination rule applied in the test
was the Product rule.
The above test results in Table 2 show that there is little point in using all the
classifiers in combination schemes, as the optimal solution is the combination of
SVM, ANN, and kNN. Including GMM and DTL only leads to a deterioration
in the classification performance.

Classifier Combination in Speech Recognition 11

Table 2. Combination error obtained using the Product Decision Rule

Ø
ANN
SVM

ANN
SVM
kNN

ANN
SVM
kNN
GMM

ANN
SVM
kNN
GMM
DTL

g1set1 13.71% 12.46% 12.00% 15.07% 29.91%

g1set2 12.23% 11.70% 11.76% 18.14% 27.42%

g1set3 11.76% 11.05% 11.70% 18.44% 27.96%

g1set4 11.82% 11.05% 12.77% 19.62% 28.25%

g1set5 11.41% 10.99% 10.87% 19.39% 27.66%

g2set1 9.93% 10.11% 8.63% 10.93% 17.43%

g2set2 9.69% 9.69% 8.76% 12.12% 16.61%

g2set3 8.22% 7.80% 7.03% 12.29% 16.19%

g2set4 7.92% 9.10% 8.98% 13.18% 17.14%

g2set5 8.16% 9.46% 8.51% 13.95% 19.33%

g3set1 6.03% 6.21% 5.14% 7.98% 8.04%

g3set2 5.56% 5.67% 5.02% 7.74% 9.04%

g3set3 5.38% 4.96% 5.14% 7.92% 7.21%

g3set4 5.14% 5.02% 4.67% 8.22% 9.40%

g3set5 4.96% 5.50% 5.02% 7.74% 9.10%

4.6 Comparing combination rules

In the next stage of the testing we combined the outputs of the selected classifiers
(SVM, ANN, and kNN) by applying various combination rules. Table 3 suggests
that there is no definite optimal rule for combining classifiers using this database.
Combiners which applied the Sum rule performed the best, but the improvement
compared with the others was only marginal.

4.7 Results using Bagging

In this part the Bagging algorithm was applied to each of the classifiers. During
the trials 15 bootstrap samples were generated, each of them with a size two-
thirds that of the size of the original training-set.
As can be seen (Table 4), Bagging can improve classification performance, almost
to the same level of the previous combination methods, but it requires more
processing time.

4.8 Results using Boosting

Because Boosting is an improvement on Bagging, we expected a better perfor-
mance. Testing Boosting on this data-set, however, produced roughly the same
classification error values. The explanation for this is that the classifiers are too
”strong”, they generated very small classification error when using the training

12 László Felföldi, András Kocsor, László Tóth

Table 3. Classification error of hybrid combinations using ANN, SVM, and kNN

Prod Sum Max Min Borda Voting

g1set1 12.00% 11.64% 12.59% 12.77% 12.77% 13.23%

g1set2 11.76% 11.41% 12.06% 13.06% 12.06% 11.47%

g1set3 11.70% 11.35% 13.18% 12.29% 11.64% 10.87%

g1set4 12.77% 12.41% 14.24% 12.35% 12.59% 11.41%

g1set5 10.87% 10.70% 11.88% 11.17% 11.41% 11.17%

g2set1 8.63% 8.45% 9.22% 9.10% 8.87% 9.16%

g2set2 8.75% 8.57% 9.87% 9.16% 9.10% 9.04%

g2set3 7.03% 7.09% 8.04% 7.33% 7.80% 7.15%

g2set4 8.98% 7.98% 9.87% 9.34% 8.69% 7.74%

g2set5 8.51% 8.22% 8.98% 7.98% 8.81% 8.51%

g3set1 5.14% 5.14% 6.32% 5.61% 5.61% 5.56%

g3set2 5.02% 5.50% 5.73% 4.85% 5.08% 5.08%

g3set3 5.14% 4.91% 5.26% 5.20% 5.08% 4.91%

g3set4 4.67% 4.61% 5.02% 4.79% 5.02% 4.91%

g3set5 5.02% 4.96% 5.08% 5.14% 5.14% 5.14%

Table 4. Classification error of Bagging classifiers

ANN SVM GMM kNN DTL

g1set1 12.71% 12.59% 19.80% 20.45% 26.36%

g1set2 11.76% 12.23% 23.05% 19.21% 22.70%

g1set3 10.99% 10.28% 22.70% 21.10% 22.87%

g1set4 11.88% 11.29% 22.94% 22.28% 21.57%

g1set5 10.70% 10.82% 21.22% 20.21% 21.39%

g2set1 11.17% 9.52% 14.83% 13.95% 16.84%

g2set2 9.75% 9.40% 18.38% 13.65% 17.32%

g2set3 8.16% 7.45% 15.96% 12.83% 16.90%

g2set4 8.69% 7.51% 16.67% 13.12% 16.31%

g2set5 9.57% 7.86% 16.67% 12.65% 16.37%

g3set1 6.80% 5.44% 11.05% 8.87% 11.23%

g3set2 6.38% 5.08% 10.64% 7.80% 10.52%

g3set3 5.79% 5.50% 10.11% 7.51% 11.82%

g3set4 5.26% 4.61% 09.57% 7.15% 10.22%

g3set5 6.09% 5.02% 9.63% 7.09% 10.40%

Classifier Combination in Speech Recognition 13

set. After the first step of Boosting, only the ”noise” remained in the bootstrap
sample, which was too difficult to separate, and the classification error on this
sample generally hit the 50% limit. Here the algorithm exits, but in practice a
standard Bagging (uniform bootstrapping) step can be performed instead. The
result (Table 5)is very close to that for the Bagging algorithm.

Table 5. Classification error of Boosting classifiers

ANN SVM GMM kNN DTL

g1set1 12.51% 12.44 18.55% 20.32% 25.12%

g1set2 11.56% 11.97 22.05% 19.42% 22.25%

g1set3 10.79% 9.67 20.12% 20.87% 21.98%

g1set4 11.88% 10.43 20.05% 22.16% 21.60%

g1set5 10.66% 10.34 21.22% 19.87% 20.47%

g2set1 11.17% 9.72 14.87% 13.95% 16.75%

g2set2 9.75% 9.31 17.12% 13.87% 15.88%

g2set3 8.42% 7.14 15.27% 12.83% 16.36%

g2set4 8.64% 7.62 14.98% 13.07% 16.59%

g2set5 9.77% 7.36 15.14% 12.68% 15.72%

g3set1 6.76% 5.32 11.23% 8.97% 11.17%

g3set2 6.41% 4.87 9.96% 7.72% 10.69%

g3set3 5.63% 5.50 10.03% 7.31% 11.47%

g3set4 5.28% 4.82 9.98% 7.22% 9.93%

g3set5 6.02% 4.91 9.61% 6.98% 10.05%

q

5 Conclusion

We reviewed the various combination schemes available using speech recogni-
tion oriented data-sets. Making classifier hybrids improved the discrimination
performance, the best results being obtained by aggregating the output of SVM,
ANN, and kNN. Experimental results show that the performance of the combin-
ers applying different decision rule was not significantly different, but the sum
rule outperformed the others. Comparing the traditional Bagging and Boosting
techniques, we found that they have nearly the same classification improvement,
but their applicability is limited because they are too cpu intensive. The find-
ings suggest that it is worth applying combination techniques in phoneme-level
speech recognition systems because they will hopefully produce better scores,
hence improved results. In the future we plan to investigate advanced combina-
tion methods, focusing on word (phoneme sequence) recognition where another
dimension of possible knowledge source aggregation arises.

14 László Felföldi, András Kocsor, László Tóth

References

1. L. Breiman, Bagging Predictors, Machine Learnings, Vol. 24, No. 2, pp. 123-140,
1996.

2. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
1995.

3. T.G. Dietterich, Machine-Learning Research: Four Current Directions, The AI
Magazine, Vol. 18, No. 4, pp. 97-136, 1998.

4. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, John Wiley
& Sons Inc., 2001.

5. A. K. Jain, Statistical Pattern Recognition: A Review, IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, Vol. 22. No. 1, January 2000.

6. J. Kittler, M. Hatef, R.P.W. Duin, J. Matas On Combining Classifiers, IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 20. No. 3, March 1998.

7. Kocsor et al A Comparative Study of Several Feature Transformation and Learn-
ing Methods for Phoneme Classification, International Journal of Speech Technology,
Vol. 3. pp. 201-215, 2000.

8. J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
9. R.E. Shapire, The Strength of Weak Learnability, Machine Learnings, Vol. 5, pp.

197-227, 1990.
10. V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons Inc., 1998.
11. David H. Wolpert, Stacked Generalization, Neural Networks, Vol. 5, pp. 241-259,

1992.

