
Fast Independent Component Analysis in Kernel

Feature Spaces

András Kocsor and János Csirik

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences and the University of Szeged

H-6720 Szeged, Aradi vértanúk tere 1., Hungary
{kocsor, csirik}@inf.u-szeged.hu

http://www.inf.u-szeged.hu/speech

Abstract. It is common practice to apply linear or nonlinear feature ex-
traction methods before classification. Usually linear methods are faster
and simpler than nonlinear ones but an idea successfully employed in
the nonlinearization of Support Vector Machines permits a simple and
effective extension of several statistical methods to their nonlinear coun-
terparts. In this paper we follow this general nonlinearization approach
in the context of Independent Component Analysis, which is a general
purpose statistical method for blind source separation and feature ex-
traction. In addition, nonlinearized formulae are furnished along with an
illustration of the usefulness of the proposed method as an unsupervised
feature extractor for the classification of Hungarian phonemes.

KeyWords. feature extraction, kernel methods, Independent Compo-
nent Analysis, FastICA, phoneme classification

1 Introduction

Feature extraction methods, whether in linear or a nonlinear form, produce pre-
processing transformations of high dimensional input data, which may increase
the overall performance of classifiers in many real world applications. These algo-
rithms also permit the restriction of the entire input space to a subspace of lower
dimensionality. In general, experience has shown that dimensionality reduction
has a favorable effect on the classification performance, i.e. reducing superfluous
features which can disturb the goal of separation.

In this study Independent Component Analysis will be derived in a nonlin-
earized form, where the method of nonlinearization was performed by employing
the so-called ”kernel-idea” [11]. This notion can be traced back to the poten-
tial function method [1], and its renewed use in the ubiquitous Support Vector
Machine [4], [21].

Without loss of generality we shall assume that as a realization of multivariate
random variables, there are m-dimensional real attribute vectors in a compact
set X over

� m describing objects in a certain domain, and that we have a

1



2 A. Kocsor and J. Csirik

X
F

φ(x)

φ(y)
y

x

φ

k(x,y) = φ(x) · φ(y)

Fig. 1. The ”kernel-idea”. F is the closure of the linear span of the mapped data. The
dot product in the kernel feature space F is defined implicitly. The dot product of
∑n

i=1 αiφ(xi) and
∑n

i=1 βiφ(xi) is
∑

i,j αiβjk(xi,xj).

finite m× n sample matrix X = [x1, . . . ,xn] containing n random observations.
The aim of Independent Component Analysis (ICA) is to linearly transform
the sample matrix X into components that are as independent as possible. The
definition of independence of the components can be viewed in different ways. In
[8] and [9] Hyvärinen proposed a new concept and a new method (i.e. FastICA)
that extends Comon’s information theoretic ICA approach [6] with a new family
of contrast functions. FastICA is a fast approximate Newton iteration procedure
(the convergence is at least quadratic) for the optimization of the negentropy
approximant (see definition later), which serves as a measure for selecting new
independent components. Fortunately this method can be reexpressed as its
input is K = X>X instead of X, where the n × n symmetric matrix K is the
pairwise combination of dot products of the sample (K = [xi · xj]ij). Now let
the dot product be implicitly defined (Fig. 1) by the kernel function k in some
finite or infinite dimensional feature space F with associated transformation φ:

k(x,y) = φ(x) · φ(y). (1)

Going the other way, constructing an appropriate kernel function (i.e. where
such a function φ exists) is a non-trivial problem, but there are many good
suggestions about the sorts of kernel functions which might be adopted along
with some background theory [21], [5]. However, the two most popular kernels



FastICA in Kernel Feature Spaces 3

are the following:

Polynomial kernel: k1(x,y) = (x · y)
d
, d ∈ � , (2)

Gaussian RBF kernel: k2(x,y) = exp
(

−||x− y||2/r
)

, r ∈
�

+. (3)

For a given kernel function the pair (φ,dimF) is not always unique and for the
kernels k1 and k2 the following statements hold:

i) If the dot product is computed as a polynomial kernel, then the dimension

of the feature space is at least

(

m+ d− 1
d

)

.

ii) The dot product using the Gaussian RBF kernel induces infinite dimension
feature spaces.

As the input of FastICA is represented only by dot products, matrix K is easily
redefinable by

K = [k(xi,xj)]ij . (4)

With this substitution FastICA produces a linear transformation matrix in the
kernel feature space F , but now this is no longer a linear transformation of the
input data owing to the nonlinearity of φ. Still, dot products in F computed
with kernels offer a fast implicit access to this space that in turn leads to a low
complexity nonlinear extractor. If we have a low-complexity (perhaps linear)
kernel function the dot product φ(xi) · φ(xj) can also be computed with fewer
operations (e.g. O(m)) whether or not φ(x) is infinite in dimension.

Using this general schema various feature extraction methods such as Princi-
pal Component Analysis (the first generalization right after SVM, proposed by
Schölkopf et al.) [19], [15], [13], Linear Discriminant Analysis [16], [18], [20] and
Independent Component Analysis have already been nonlinearized. Hopefully
other statistical methods will uncover their nonlinear counterparts in the near
future.

In the subsequent section we will review the standard Independent Compo-
nent Analysis and FastICA algorithms. Afterwards we will reformulate ICA in
such a way that its input is the dot product of the input data, and then this
basic operation will be replaced by kernel functions. The final part of the paper
will discuss the results of experiments on the phoneme classification followed by
some concluding remarks.

2 Independent Component Analysis

Independent Component Analysis [6], [8], [9], [7] is a general purpose statistical
method that originally arose from the study of blind source separation (BSS).
A typical BSS problem is the cocktail-party problem where several people are
speaking simultaneously in the same room and several microphones record a
mixture of speech signals. The task is to separate the voices of different speakers
using the recorded samples. Another application of ICA is feature extraction,



4 A. Kocsor and J. Csirik

where the aim is to linearly transform the input data into uncorrelated com-
ponents, along which the distribution of the sample set is the least Gaussian.
The reason for this is that along these directions the data is supposedly easier
to classify. For optimal selection of the independent directions several contrast
function were defined using approximately equivalent approaches. Here we fol-
low the way proposed by Hyvärinen [8], [9], [7]. Generally speaking, we expect
these functions to be non-negative and have a zero value for a Gaussian distribu-
tion. Negentropy is a useful measure having just this property, used for assessing
non-Gaussianity (i.e. the least Gaussianity). Since obtaining this quantity via its
definition is computationally rather difficult, a simple easily-computable approx-
imation is normally employed. The negentropy of a variable η with zero mean
and unit variance is estimated by the formula

JG(η) ≈ (E{G(η)} − E{G(ν)})
2

(5)

where G() :
�
→

�
is an appropriate nonquadratic function, E denotes the

expected value and ν is a standardized Gaussian variable. The following three
choices of G(η) are conventionally used: η4, log (cosh (η)) or − exp (−η2/2). It
should be noticed that in (5) the expected value of G(ν) is a constant, its value
only depending on the selected contrast function (e.g. E(G1(ν)) = 3). Hyvärinen
recently proposed a fast iterative algorithm called FastICA for the selection of
the new base vectors of the linearly transformed space. The goodness of a new
direction a is measured by the following function, where η is replaced with a · x
in the negentropy approximant (5):

τG(a) = (E{G(a · x))− E{G(ν)})
2
. (6)

As a matter of fact, FastICA is an approximate Newton iteration procedure for
the local optimization of the function τG(a). Before running FastICA, however,
the raw input data X must first be preprocessed – by centering and whitening
it. Between centering and whitening we may, perhaps, also apply a deviance
normalization because the standardized data used as an input for the whitening
sometimes improves the efficiency of the FastICA algorithm. However, we should
mention here there are many other iterative methods for performing Independent
Component Analysis. Some of these (similar to FastICA) do require centering
and whitening, while others do not. In general, experience has taught us that
all these algorithms should converge faster on centered and whitened data, even
those which do not really require it.
Centering. An essential step is to shift the original sample set x1, . . . ,xn with
its mean µ = E{x}, to obtain data x′

1 = x1 − µ, . . . ,x
′

n = xn − µ, with a mean
of zero.
Whitening. The goal of this step is to transform the centered samples x′

1, . . . ,x
′

n

via an orthogonal transformation Q into a space where the covariance matrix
Ĉ = E{x̂x̂>} of the points x̂1 = Q>x′1, . . . , x̂n = Q>x′n is the unit matrix. Since
the standard principal component analysis [10] transforms the covariance matrix
into a diagonal form, the elements in the diagonal being the eigenvalues of the
original covariance matrix C ′ = E{x′x′

>
}, it only remains to transform each



FastICA in Kernel Feature Spaces 5

diagonal element to one. It is readily seen that the sample covariance matrix
C ′ is symmetric positive semidefinite, so the eigenvectors are orthogonal and
the corresponding real eigenvalues are nonnegative. If we then further assume
that the eigenpairs of C ′ are (c1, λ1), . . . , (cm, λm) and λ1 ≥ . . . ≥ λm, the

transformation matrix Q will take the form [c1λ
−1/2
1 , . . . , ckλ

−1/2
k ]. If k is less

than m a dimensionality reduction is employed.
Properties of the preprocessing stage. Firstly, after centering and whitening for
every normalized a the mean of a · x̂1, . . . , a · x̂n is zero, and its variance is one.
Actually we need this since (5) requires that η has a zero mean and variance of
one hence, with the substitution η = a · x̂, the projected data a · x̂ must also
have this property. Secondly, for any matrix W the covariance matrix CW of the
transformed points W x̂1, . . . ,W x̂n will remain a unit matrix if and only if W is
orthogonal, since

CW = E{W x̂(W x̂)>} = WE{x̂x̂>}W> = WIW> = WW> (7)

FastICA. After preprocessing, this method finds a new orthogonal base W for
the preprocessed data, where the values of the non-Gaussianity measure τG for
the base vectors are large1. The following pseudo-code give further details2:

% The input for this algorithm is the sample matrix X and the

% nonlinear function G, while the output is the transformation

% matrix W. The first and second order derivatives of G are

% denoted by G
′

and G
′′

. (WiW
>

i )−1/2Wi is a symmetric

% decorrelation, where (WiW
>

i )−1/2 can be obtained from its

% eigenvalue decomposition. If WiW
>

i = EDE>, then

% (WiW
>

i )−1/2 is equal to ED−1/2E>.

procedure FastICA(X,G);
µ = E{x}; x′ = x− µ; x̂ = Q>x′; % centering & whitening

Let W0 be a random m×m orthogonal matrix;

W0 = (W0W
>

0 )−1/2W0;

i = 0;
While W has not converged;

for j = 1 to m
let sj be the jth raw vector of Wi;

wj = E{x̂G
′

(sj · x̂)} − E{G
′′

(sj · x̂)}sj;
end;

i = i+ 1;
Wi = [w1, . . . ,wp]

>;
Wi = (WiW

>

i )−1/2Wi;

do

End procedure

1 Note that since the data remains whitened after an orthogonal transformation, ICA
can be considered an extension of PCA.

2 MatLab code available in [7].



6 A. Kocsor and J. Csirik

Transformation of test vectors. For an arbitrary test vector y ∈ X the transfor-
mation can be done using y∗ = WQ>(y − µ). Here W denotes the orthogonal
transformation matrix we obtained as the output from FastICA, while Q is the
matrix obtained from whitening.

3 Independent Component Analysis with Kernels

In this section we derive the kernel counterpart of FastICA. To this end, let the
inner product be implicitly defined by the kernel function k in F with associ-
ated transformation φ. Now we need only extend nonlinearly the centering and
whitening of the data, since after nonlinearizing Q>(y − µ) we get data in F
thus the nonlinearization of the iterative section becomes superfluous.

Centering in F . We shift the data φ(x1), . . . , Φ(xn) with its mean µφ, to obtain
data φ′(x1), . . . , φ

′(xn) with a mean of zero:

φ′(x1) = φ(x1)− µ
Φ, . . . , φ′(xn) = φ(xn)− µ

φ, µ
φ =

1

n

n
∑

i=1

φ(xi) (8)

Whitening in F . Much like that in linear ICA, the goal of this step is to find a
transformation Qφ̂ such that the covariance matrix

Cφ̂ =
1

n

n
∑

i=1

φ̂(xi)φ̂(xi)
>

(9)

of the sample φ̂(x1) = Qφ̂
>φ

′

(x1), . . ., φ̂(xn) = Qφ̂
>φ

′

(xn) is a unit matrix.
As we saw earlier the column vectors of Qφ̂ are the weighted eigenvectors of

the positive semidefinite matrix C φ̂. Because this eigen-problem is equivalent to
determining the stationary points of the Rayleigh Quotient

a>Cφ̂a

a>a
, 0 6= a ∈ F , (10)

this formula will be rearranged as an expression of dot products of the input

data. Owing to the special form of Cφ̂ we suppose that when we search for
stationary points, a has the form

a =
n
∑

i=1

αiφ̂(xi). (11)

We may arrive at this assumption in various ways, e.g. by decomposing an ar-
bitrary vector a into a1 + a2, where a1 is that component of a which falls in
SPAN(φ̂(x1), . . . , φ̂(xn)), while a2 is the component perpendicular to it. Then
from the derivation of (10) we see that a2 · a2 = 0 for the stationary points.



FastICA in Kernel Feature Spaces 7

The following formulas give the Rayleigh Quotient as a function of α and
k(xi,xj):

a>Cφ̂a

a>a
=

(

∑n
t=1

αtφ̂(xt)
>

)

Cφ̂
(

∑n
k=1

αkφ̂(xk)
)

(

∑n
t=1

αtφ̂(xt)>
)(

∑n
k=1

αkφ̂(xk)
) =

α
> 1

nK̂K̂α

α>K̂α
, (12)

where

K̂tk =
(

φ(xt)
> −

(

1

n

∑n
i=1

φ(xi)
>
)) (

φ(xk)−
(

1

n

∑n
i=1

φ(xi)
))

=
k(xt,xk)−

(

1

n

∑n
i=1

(k(xi,xk) + k(xt,xi))
)

+ 1

n2

∑n
i=1

∑n
j=1

k(xi,xj)

(13)
From differentiating (12) with respect to α we see that the stationary points are
the solution vectors of the general eigenvalue problem 1

nK̂K̂α = λK̂α, which

in this case is obviously equivalent to the problem 1

nK̂α = λα. Moreover, since

k(xt,xk) = k(xk,xt) and
3
α
> 1

nK̂α = 1

na>a ≥ 0, the matrix 1

nK̂ is symmetric
positive semidefinite and hence its eigenvectors are orthogonal and the corre-
sponding real eigenvalues are non-negative. Let the k positive dominant eigen-
values of 1

nK̂ be denoted by λ1 ≥ . . . ≥ λk > 0 and the corresponding normalized
eigenvectors be α1, . . . ,αm. Then the orthogonal matrix of the transformation
can be calculated via:

Qφ̂ := n−1/2

[

λ−1
1

n
∑

i=1

α
1
iφ̂(xi), . . . , λ

−1

k

n
∑

i=1

α
k
iφ̂(xi)

]

, (14)

where the factors n−1/2 and λ−1 are needed to keep the column vectors of Qφ̂

normalized 4.
Transformation of Test Vectors. Let y ∈ X be an arbitrary test vector. New
features can be expressed by φ(y)∗ = WQ>

φ̂
(φ(y)− µφ), where Qφ̂ denotes the

matrix we obtained from whitening, while W denotes the orthogonal transfor-
mation matrix we got as the output of Kernel-FastICA. Practically speaking,
Kernel-FastICA = Kernel-Centering + Kernel-Whitening + iterative section of
the original FastICA. Of course, the computation of φ(y)∗ involves only dot
products:

φ(y)∗ = Wn−1/2

[

λ1
−1

n
∑

i=1

α
1
ici, . . . , λk

−1

n
∑

i=1

α
k
ici

]>

, (15)

ci = φ̂(xi)·φ̂(y) = k(xi,y)−





1

n

n
∑

j=1

(k(xi,xj) + k(xj,y))



+
1

n2

n
∑

t=1

n
∑

j=1

k(xt,xj).

(16)
3 Here we temporarily disregard the constraint a 6= 0.
4 If we use the factors λ−1/2 instead of λ−1 in (14), then we obtain the Kernel Principal
Component Analysis.



8 A. Kocsor and J. Csirik

4 Experimental results

In these trials we wanted to see how well independent component analysis and its
nonlinear counterpart could reduce the number of features and increase classifica-
tion performance. Since automatic phoneme classification is of great importance
in the computer-assisted training of the speech & hearing handicapped, we chose
phoneme classification as an area of investigation.

We developed a program to help with speech training of the hearing impaired,
where the intention was to support or replace their diminished auditory feedback
with a visual one. In our initial experiments we focussed on the classification of
vowels, as the learning of the vowels is the most challenging for the hearing-
impaired. The software we designed assumes that the vowels are pronounced in
isolation or in the form of two-syllable words, which is a conventional training
strategy. Visual feedback is provided on a frame-by-frame basis in the form of
flickering letters, their brightness being proportional to the vowels recognizer’s
output (see fig. 2.).

Corpus. For training and testing purposes we recorded samples from 25
speakers. The speech signals were recorded and stored at a sampling rate of
22050 Hz in 16-bit quality. Each speakers uttered 59 two-syllable Hungarian
words of the CVCVC form, where the consonants (C) are mostly unvoiced plo-
sives so as to ease the detection of the vowels (V). The distribution of the 9
vowels (long and short versions were not distinguished) is approximately uni-
form in the database. In the trials 20 speakers were used for training and 5 for
testing.

Feature Sets. The signals were processed in 10 ms frames, from which the log-
energies of 24 critical-bands were extracted using FFT and triangular weight-
ing [17]. In our early tests we only utilized the filter-bank log-energies from
the most centered frame of the steady-state part of each vowel (“FBLE” set).
Then we added the derivatives of these features to model the signal dynamics
(“FBLE+Deriv” set). In another experiment we smoothed the feature trajecto-
ries so as to remove the effects of short noises and disturbances (”FBLE Smooth”
set). In yet another set of features we extended the log-energies with the gravity
centers of four frequency bands which approximately corresponds to the possible
values of the formants. These gravity centers provide a crude approximation of
the formants (“FBLE+Grav” set) [2].

Classifiers. In all the trials with Artificial Neural Nets (ANN) [3] the well-
known three-layer feed-forward MLP networks were employed with the back-
propagation learning rule. The number of hidden neurons was equal to the num-
ber of features. In the Support Vector Machine (SVM) [21] experiments we always
applied the Gaussian RBF kernel function (k2, r = 10).

Transformations. In our tests with ICA and Kernel-ICA the eigenvectors be-
longing to the 16 dominant eigenvalues were selected as basis vectors for the
transformed space and the nonlinear function G(η) was η4. In Kernel-ICA the
kernel function was as before. Naturally when we applied a certain transforma-
tion on the training set before learning, we used the same transformation on the
test data during testing.



FastICA in Kernel Feature Spaces 9

5 Results and Discussion

Table 1 shows the recognition errors. Here the rows represent the four feature
sets, while the columns correspond to the applied transformation and classifier
combinations.

On examining the results the first striking point is that although the trans-
formations retained only 16 features, the classifiers could achieve the same or
better scores. The reason for this is that ICA determines directions with high
non-Gaussianity, which is proven to be a beneficial feature extraction strategy
before the classification. As regards the various feature sets, we realized that the
gravity center features and smoothing the trajectories both lead to a remarkable
improvement in the results, while adding the derivatives in no way increased per-
formance. Most likely, a clever combination of smoothing and taking derivatives
(or RASTA filtering) could yield still better results. Another notable observation
is that SVM consistently outperformed ANN by several percent. This can mostly
be attributed to the fact that the SVM algorithm can deal with overfitting. The
latter is a common problem in ANN training.

Finally, with Kernel-ICA, we have to conclude that it is worthwhile contin-
uing doing experiments with this type of nonlinearity. However, the problem of
finding the best kernel function for the dot product extension or of choosing the
best nonlinearity for the contrast function remains an open one at present.

Table 1. Recognition errors for the vowel classification task. The numbers in paren-
thesis correspond to the number of features.

none

ANN

none

SVM

ICA

ANN

(16)

ICA

SVM

(16)

K−ICA

ANN

(16)

K−ICA

SVM

(16)

FBLE (24) 26.71% 22.70% 25.65% 23.84% 23.19% 22.20%

FBLE+Deriv (48) 25.82% 24.01% 28.62% 26.81% 24.67% 23.35%

FBLE+Grav (32) 24.01% 22.03% 23.68% 23.35% 20.88% 20.06%

FBLE Smooth (24) 23.68% 21.05% 23.84% 23.84% 22.03% 20.39%

6 Conclusion

In this paper we presented a new nonlinearized version of Independent Com-
ponent Analysis using a kernel approach. Encouraged by [19] and [8], we could
perform further extensions on Kernel Principal Component Analysis (KPCA),
since ICA can be viewed as a modified PCA (centering and whitening) and an
additional iterative process. But regardless of this we have demonstrated the su-
periority of Kernel-ICA over its linear counterpart on the phoneme classification
task. Unfortunately, feature extraction in kernel feature spaces is currently much
slower, than the traditional linear version. Hence in the near future we will focus
our effors on working with a sparse data representation scheme that is hoped
will speed-up the computations somewhat. This seems to be a good direction to
go in.



10 A. Kocsor and J. Csirik

References

1. Aizerman, M. A., Braverman, E. M. and Rozonoer L. I., Theoretical foun-
dation of the potential function method in pattern recognition learning, Automat.
Remote Cont., vol. 25, pp. 821-837, 1964.

2. Albesano, D., De Mori, R., Gemello, R., and Mana, F., A study on the
effect of adding new dimensions to trajectories in the acoustic space, Proc. of Eu-
roSpeech’99, pp. 1503-1506, 1999.

3. Bishop, C. M., Neural Networks for Pattern Recognition, Oxford Univ. Press, 1995.
4. Boser, B. E., Guyon, I. M. and Vapnik V. N, A training algorithm for optimal
margin classifier, in Proc. 5th Annu. ACM Workshop Computat. Learning Theory,
D. Haussler, ed., Pittsburgh, PA, pp. 144-152, 1992.

5. Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Ma-
chines and other kernel-based learning methods Cambridge University Press, 2000.

6. Comon, P. Independent component analysis, A new concept? Signal Processing,
36:287-314, 1994.

7. FastICAWeb Page, http://www.cis.hut.fi/projects/ica/fastica/index.shtml, 2001.
8. Hyvärinen, A. A family of fixed-point algorithms for independent component
analysis In Proceedings of ICASSP, Munich, Germany, 1997.

9. Hyvärinen, A. New Approximations of Differential Entropy for Independent Com-
ponent Analysis and Projection Pursuit. In Advances in Neural Information Process-
ing Systems, 10:273-279, MIT Press, 1998.

10. Jolliffe, I. J. Principal Component Analysis, Springer-Verlag, New York, 1986.
11. Kernel Machines Web Page, http://www.kernel-machines.org, 2001.
12. Kocsor, A., Tóth, L., Kuba, A. Jr., Kovács, K., Jelasity, M., Gyimóthy,

T. and Csirik, J., A Comparative Study of Several Feature Transformation and
Learning Methods for Phoneme Classification, Int. Journal of Speech Technology,
Vol. 3., No. 3/4, pp. 263-276, 2000.

13. Kocsor, A., Kuba, A. Jr. and Tóth, L. Phoneme Classification Using Kernel
Principal Component Analysis, Priodica Polytechnica, in print, 2001.

14. Kocsor, A., Tóth, L. and Paczolay, D., A Nonlinearized Discriminant Analy-
sis and its Application to Speech Impediment Therapy, in V. Matousek et al. (eds.):
Text, Speech and Dialogue, Proc. of TSD 2001, Springer Verlag LNAI, in print, 2001.

15. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K. and Schölkopf, B., An
Introduction to Kernel-Based Learning Algorithms, IEEE Transactions on Neural
Networks, Vol. 12, No. 2, 2001.

16. Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and Müller, K.-R., Fisher
Discriminant Analysis with kernels, in Neural Networks for Signal Processing IX, Hu,
J. Larsen, E. Wilson and S. Douglas, Eds. Piscataway, NJ:IEEE, pp. 41-48, 1999.

17. Rabiner, L. and Juang, B.-H. Fundamentals of Speech Recognition, Prentice
Hall, 1993.

18. Roth, V. and Steinhage, V., Nonlinear discriminant analysis using kernel func-
tions, In Advances in Neural Information Processing Systems 12, S. A. Solla, T. K.
Leen and K.-R. Müeller, Eds. Cambridge, MA:MIT Press, pp. 526-532, 2000.

19. Schölkopf, B., Smola, A. J. and Müller, K.-R., Nonlinear component anal-
ysis as a kernel eigenvalue problem, Neural Comput., vol. 10, pp. 1299-1319, 1998.

20. Toth, L., Kocsor, A., and Kovács, K., A Discriminative Segmental Speech
Model and Its Application to Hungarian Number Recognition, in Sojka, P. et
al.(eds.):Text, Speech and Dialogue, Proceedings of TSD 2000, Springer Verlag LNAI
series, vol. 1902, pp. 307-313, 2000.

21. Vapnik, V. N., Statistical Learning Theory, John Wiley & Sons Inc., 1998.


