
Available online at www.sciencedirect.com
www.elsevier.com/locate/ejor

European Journal of Operational Research 195 (2009) 729–743
A Guided Tabu Search for the Vehicle Routing Problem with
two-dimensional loading constraints

Emmanouil E. Zachariadis a, Christos D. Tarantilis b,*, Christos T. Kiranoudis a

a Department of Process Analysis and Plant Design, Department of Chemical Engineering, National Technical University of Athens, Athens, Greece
b Department of Management Science and Technology, Athens University of Economics and Business, Hydras Street 28, Athens 11362, Greece

Received 12 January 2007; accepted 31 May 2007
Available online 21 November 2007
Abstract

We present a metaheuristic methodology for the Capacitated Vehicle Routing Problem with two-dimensional loading constraints (2L-
CVRP). 2L-CVRP is a generalisation of the Capacitated Vehicle Routing Problem, in which customer demand is formed by a set of two-
dimensional, rectangular, weighted items. The purpose of this problem is to produce the minimum cost routes, starting and terminating
at a central depot, to satisfy the customer demand. Furthermore, the transported items must be feasibly packed into the loading surfaces
of the vehicles. We propose a metaheuristic algorithm which incorporates the rationale of Tabu Search and Guided Local Search. The
loading aspects of the problem are tackled using a collection of packing heuristics. To accelerate the search process, we reduce the neigh-
bourhoods explored, and employ a memory structure to record the loading feasibility information. Extensive experiments were con-
ducted to calibrate the algorithmic parameters. The effectiveness of the proposed metaheuristic algorithm was tested on benchmark
instances and led to several new best solutions.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Vehicle routing; Loading constraints; Tabu Search; Guided Local Search
1. Introduction

This paper addresses a variant of the standard version of
the Vehicle Routing Problem (VRP) (Toth and Vigo,
2002), called the Capacitated Vehicle Routing Problem
with two-dimensional loading constraints (2L-CVRP) (Iori
et al., 2007; Iori, 2005; Gendreau et al., in press). It models
the cases when the demand of customers consists of two-
dimensional, rectangular and weighted items. Although
2L-CVRP is a practical problem, which often arises in
the field of transportation logistics, only recently did
researchers publish the first solution approaches for it.

The standard version of the CVRP (Rochat and Tail-
lard, 1995; Prins, 2004; Tarantilis and Kiranoudis, 2002;
Tarantilis, 2005; Mester and Bräysy, 2007) is an NP-hard
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.05.058

* Corresponding author. Fax: +30 2108816705.
E-mail address: tarantil@aueb.gr (C.D. Tarantilis).
optimisation problem which involves determining the opti-
mal set of routes, for a homogenous fleet of vehicles, to ser-
vice a set of customers with known demands. The designed
routes must originate and terminate at the central depot,
and totally satisfy customer demand. Each customer must
be visited once by one vehicle only. The total demand of
the customer set, covered by a route, must not exceed the
maximum carrying load of the vehicles.

The problem examined in the present paper (2L-CVRP)
is a generalisation of the CVRP, as it considers the demand
of customers in the form of two-dimensional, rectangular
and weighted items. The 2L-CVRP can be reduced to the
CVRP by setting the dimensions of the items equal to zero
and dealing only with their weight attribute. The aim of the
2L-CVRP is to generate a set of routes that respect the
aforementioned CVRP constraints but also to guarantee
the feasible loading/unloading of the items into/from the
vehicles. We consider two versions of the 2L-CVRP: the
Unrestricted one that only deals with the feasible loading

mailto:tarantil@aueb.gr

730 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
of the items into the vehicles, and the Sequential one that
considers both loading and unloading constraints, as it will
be described in the next sections. Loading the two-dimen-
sional items into the vehicles is closely related to the two-
dimensional bin packing problem (2BPP). 2BPP is an
NP-hard combinatorial optimisation problem which aims
at packing a given set of rectangular items into the mini-
mum number of identical rectangular bins (Baker et al.,
1980; Chazelle, 1983; Martello and Vigo, 1998; Lodi
et al., 1999; Burke et al., 2004; Fekete et al., 2007).

The 2L-CVRP is a particularly important problem. Its
importance can be attributed to the fact that it is an inter-
esting problem both from the theoretical and the practical
points of view. Regarding the theoretical viewpoint, since
2L-CVRP is, in a sense, composed of two NP-hard optimi-
sation problems (CVRP and 2BPP), it is also a challenging
NP-hard problem of high complexity. As far as its practical
importance is concerned, the 2L-CVRP has an obvious
commercial value. A variety of real life applications in
the distribution/collection management context involves
the transportation of rectangular shaped items that cannot
be stacked, due to their weight or fragility (household
appliances, delicate pieces of furniture, etc.). Pallet distri-
bution is another application example of 2L-CVRP.

To the best of our knowledge, only two algorithmic
methodologies have been proposed for the 2L-CVRP. Iori
et al. (2007) have developed an exact methodology which
uses a branch-and-cut algorithm to deal with the routing
characteristics of the problem and a branch-and-bound
procedure to guarantee feasible loadings of the items into
the vehicles. This exact solution methodology is applied
to problem instances with no more than 30 customers
and 90 items. Since, in practical conditions, the scale of
the problem tends to be larger, Gendreau et al. (in press)
focused their interest on metaheuristic approaches to solve
larger 2L-CVRP instances. In particular, their algorithmic
methodology employs Tabu Search for the routing aspects
of the problem. Customers are relocated by means of the
GENI heuristic (Gendreau et al., 1992). To guarantee the
loading feasibility, they solve the two-dimensional strip
packing problem (Martello et al., 2003). In their work, they
provide 180 problem instances with diverse characteristics
as far as the size of the customer set and the number of
demanded items are concerned. Except for the CVRP with
two-dimensional constraints, researchers have recently
addressed routing problem extensions considering the
transportation of three-dimensional items (Gendreau
et al., 2006; Moura and Oliveira, 2007).

The purpose of this paper is to present an effective and
efficient metaheuristic methodology designed for the 2L-
CVRP called Guided Tabu Search (GTS). Regarding the
routing aspects of the problem examined, our algorithm
explores the solution space by employing a search strategy
based on Tabu Search, guided by an objective function
alteration mechanism. This guiding mechanism induces
diversification, and helps the search process to cover vast
areas of the solution space. To ensure the feasible loading
of the items into the vehicles, we employ a bundle of pack-
ing heuristics that aim at producing diverse packing
designs. To accelerate our methodology, the loading feasi-
bility information obtained through the progress of the
search is stored in a memory structure. The proposed solu-
tion approach was successfully tested on a 180 2L-CVRP
benchmark data set introduced by Gendreau et al. (in
press) and found several new best solutions.

The remainder of this paper is outlined as follows: in
Section 2, a detailed description of the problem examined
is provided. Section 3 presents the proposed algorithmic
methodology, followed by the computational results in
Section 4. Finally, Section 5 concludes the paper.

2. The problem

Following the description of Gendreau et al. (in press),
the 2L-CVRP is defined as follows: let G = (N,A) be an
undirected graph, where N is the vertex set containing the
central depot and n customers, and A = {(i, j):i, j 2 N,
i – j} is the edge set. With each edge (i, j) 2 A is associated
a cost cij that corresponds to the cost demanded for the
transition from i to j. In the central depot, a fleet of vh
homogenous vehicles is available. Every vehicle has a max-
imum carrying load equal to Q and a rectangular loading
surface of length L and width W. The demand of each cus-
tomer i consists of a set ITi of mi rectangular items of
known weight. Each item Iik in ITi(k = 1, 2, . . .,mi) has
length lik and width wik (corresponding to height and width
in the work of Gendreau et al. (in press)). Let ai denote the
total surface area of all the items in ITi. The items must be
placed on the loading surfaces without being rotated: their
l- and w-edges must be parallel to the L- and W-edges of
the vehicle surfaces, respectively. This constraint models
the practical cases of automated, fixed orientation palette
loading. The 2L-CVRP aims at determining the minimum
cost set of routes that satisfy the following constraints:
(a) the size of the generated route set does not exceed the
number of available vehicles vh (at most one route per vehi-
cle), (b) every route starts and ends at the central depot, (c)
the demand of every customer is totally covered, (d) each
customer is visited once, (e) the total weight of all items
demanded by the set of customers covered by a route must
not exceed the capacity of the vehicle Q and (f) there must
be a non-overlapping loading of all items demanded by the
set of customers covered by a route into the L �W loading
surface of the vehicles.

As mentioned earlier, in this paper we study two ver-
sions of the 2L-CVRP: the Unrestricted 2L-CVRP, and
the Sequential 2L-CVRP examined in the work of Iori
et al. (2007). The Unrestricted version is modelled by the
aforementioned six constraints (a–f), while for the Sequen-

tial version of the problem an additional constraint,
namely Sequence Constraint is imposed: the loading of
the items must ensure that whenever a customer i is visited,
all items in the set ITi can be unloaded by employing a
sequence of straight movements (one per item) parallel to

depot 1 2 3 depot

I11
I12

I21
I22 I31

I13

I22
I13

I31 I12

I32

I32

I21
I11

W0

0

L

DOOR

W0

0

L

DOOR

Loading A

Feasible for the
Unrestricted version

Infeasible for the
Sequential version

Loading B

Feasible for the
Unrestricted version

Feasible for the
Sequential version

I32

I11
I12

I13
I22

I21
I31

FRONT

REAR

FRONT

REAR

Fig. 1. The Unrestricted and Sequential loadings.

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 731
the length dimension of the vehicle surface. In other words,
no item of customer j, visited after customer i, can be
placed between items of customer i and the rear part (load-
ing door) of the vehicle.

The sequence constraint arises in practice, when it is not
feasible to move items inside the vehicle, due to their
weight or fragility. In these cases, the unloading of every
item must be accomplished without any repositioning of
other items. Fig. 1 demonstrates the two versions of the
2L-CVRP. In particular, Fig. 1 demonstrates a route visit-
ing three customers 1–3. Customer 1 demands items I11, I12

and I13, customer 2 demands items I21 and I22, and cus-
tomer 3 demands items I31 and I32. Let (0, 0) correspond
to the front left corner of the loading surface. The position
of an item is expressed as the coordinate pair (wpos, lpos)
where wpos denotes the W-axis position and lpos denotes
the L-axis position of the item’s left front corner. In Load-
ing A, for example, item I22 is placed at (0, 0). Loading A is
a feasible unrestricted packing but it violates the constraint
posed for the Sequential version of the problem. To be pre-
cise, item I32 obstructs the unloading of items I12 and I22,
while item I31 obstructs the unloading of item I22. On the
other hand, Loading B is a feasible loading for both the
Unrestricted, and the Sequential versions of the problem.
Items I11, I12 and I13 are the first to be unloaded, followed
by I21 and I22, and finally I31 and I32.
3. The proposed algorithm

Due to the high complexity of both the VRP and the
BPP variants, exact methodologies become inapplicable
for solving large scale instances of the 2L-CVRP, that often
arise in practice. Therefore, to solve such large scale prob-
lems, one’s interest should be focused on metaheuristic
methodologies that are able to produce near optimal solu-
tions within reasonable computing time. Analytic surveys
on the solution approaches designed for the VRP were
published by Gendreau et al. (2002) and Cordeau et al.
(2004). As mentioned in the first section, in terms of the
routing aspects of the 2L-CVRP, our algorithmic frame-
work explores the solution space by employing Tabu
Search combined with a guiding mechanism that is based
on the Guided Local Search principles (Voudouris and
Tsang, 1996). This guiding strategy controls the objective
function of the problem by penalising low-quality features
present in the current solution. Regarding the loading con-
straints of the problem, we designed a bundle of packing
heuristics that produce diverse packing structures in order
to generate a feasible loading of the items onto the loading
surface.
3.1. Packing heuristics bundle

To determine whether a route-sequence of customers-is
feasible in terms of the loading constraints of the examined
problem, we designed five packing heuristics. Given a cus-
tomer sequence rt, and its corresponding set of items ISrt,
these heuristics try to generate diverse packing structures,
in order to increase the probability of obtaining a feasible
loading. If all of the packing heuristics fail to produce
any feasible loading, the route examined is considered to
violate the loading constraints of the problem. In particu-
lar, given a route, the packing procedure starts by generat-
ing two orderings (OrdSeq,OrdUn) of all items demanded by
the set of customers covered by this route. Let the term visit

order denote the position of a customer-and its correspond-
ing items-within its route. For example, in Fig. 1, customer
3 is the third one to be visited by the vehicle; therefore the
visit order of customer 3 and its demanded items I31 and I32

is equal to 3. The OrdSeq ordering is mostly appropriate for
the Sequential 2L-CVRP, and is produced by sorting all
items transported by the route by decreasing visit order,
breaking ties by decreasing surface area. The OrdUn order-
ing is primarily suitable for the Unrestricted problem
version and is generated by simply sorting the items by
decreasing surface area. Using the first packing heuristic,

732 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
and starting from the first item ordering, items are selected
successively to be inserted onto the loading surface. Let
posList denote a list of available loading positions for the
items. In the beginning, the only available loading position
lies in the front left corner (0, 0) of the vehicle, so pos-

List = {(0,0)}. Whenever an item is inserted, its loading
position is erased from the posList, while at most four
new loading positions are generated and added into the
posList. In this way, the positions of holes that may be cre-
ated between the placed items are stored into the posList

and may be later filled by the subsequent items.
Fig. 2 schematically presents the mechanism of an item

insertion: item E is selected to be inserted into the loading
position (wC, lA). When E is inserted, the aforementioned
position becomes unavailable and four new loading posi-
tions are created. The first one is created in the rear left cor-
ner of the inserted item (wC, lA + lE), the second one in the
front right corner of the inserted item (wC + wE, lA), the
third created loading position lies at the leftmost non-occu-
pied point of the rear edge projection of the inserted item
(wD, lA + lE), and the fourth available loading position is
created at the minimum non-occupied l-axis point of the
right edge projection of item E(wC + wE, lB). The list of
available positions is updated as: posList = (posList �
{(wC, lA)}) [{(wC, lA + lE), (wC + wE, lA), (wD, lA + lE),
(wC + wE, lB)}. Note that any duplicate position entry is
removed from posList.

The position for the placement of an item is selected from
the list of available positions posList and must not lead to
any loading constraint violation (overlapping or sequential
constraint). As later explained, it is determined by the pack-
ing heuristic currently employed. If all items are packed
onto the loading surface, the route is considered to be feasi-
ble in terms of the loading constraints of the problem. If, on
the other hand, the insertion of an item into any available
position leads to loading constraint violations, the method
A

C

D

B

(wC,lA)

Inser
Item

FRO

BAC

0

L

0 W

DOOR

Fig. 2. Inserting an item in
empties the loading surface, posList is set equal to {(0,0)},
and the next packing heuristic is employed from the begin-
ning. If none of the five available packing heuristics man-
ages to produce a feasible loading, the heuristic bundle is
applied to the second ordering of the items. If again, no fea-
sible loading is obtained, the examined route is considered
to be infeasible regarding the loading constraints. Note,
that although OrdUn is primarily designed to deal with the
Unrestricted problem version, it succeeds in producing fea-
sible Sequential loading patterns in numerous cases when
OrdSeq fails. These cases usually involve loading few and
voluminous items onto the vehicles.

As mentioned earlier, the loading position of an inserted
item is determined by the packing heuristic currently in use.
This position must be feasible, i.e., it must not lead to any
overlaps (for both Unrestricted and Sequential problem
versions), or sequence constraint violations (for the
Sequential version). Each of the proposed five packing heu-
ristics Heuri (i = 1. . .5) employs a different criterion for
selecting the loading position of an item:

Heur1: Bottom-Left Fill (W-axis) (Chazelle, 1983)
From the feasible available loading positions of posList,

the position selected is the one with the minimum W-axis
coordinate, breaking ties by minimum L-axis coordinate.
Using this heuristic, the packing tends to evolve in the form
of strips parallel to the L-axis.

Heur2: Bottom-Left Fill (L-axis) (Chazelle, 1983)
From the feasible available loading positions of posList,

the position selected is the one with the minimum L-axis
coordinate, breaking ties by minimum W-axis coordinate.
Using this heuristic, the packing tends to evolve in the form
of strips parallel to the W-axis.

Heur3: Max Touching Perimeter heuristic (Lodi et al.,
1999)

For each of the feasible available positions of posList,
the total touching perimeter of the inserted item is calcu-
A

C

D

B

(wD,lA+lE)

E

(wC,lA+lE)

(wC+wE,lB)

(wC+wE,lA)

ting
 E

NT

K
DOOR

to the loading surface.

A

B

DOOR

FRONT

BACK

0

L

0 W

C
(wA,0)

Fig. 4. Calculating the perimeter for the Max Touching Perimeter No
Walls heuristic.

A

B

(0,lA+lB)

(wB,lA)

(wA,0)

DOOR

FRONT

BACK

0

L

0 W

Fig. 5. Calculating the rectangular areas of the loading positions.

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 733
lated. The total touching perimeter is evaluated as the sum
of the common edges of the inserted item with the edges of
the already inserted items, and the edges of the loading sur-
face of the vehicle as seen in Fig. 3: the total touching
perimeter of item C placed in position (wA, 0) is demon-
strated by the bold dotted lines, and is equal to
lC + wC + (wB � wA). Term lC corresponds to the common
edges of items C and A, term wC corresponds to the com-
mon edges of item C and the loading surface, and term
(wB � wA) corresponds to the common edges of items C

and B. The item is placed into the loading position that
maximises the value of touching perimeter. The Max

Touching Perimeter heuristic tends to initially spread the
items to the edges of the loading surface and later fill the
inner parts of it.

Heur4: Max Touching Perimeter No Walls heuristic

(Lodi et al., 1999)
As in the case of the Max Touching Perimeter heuristic,

for each of the feasible available positions of posList, the
total touching perimeter of the inserted item is calculated.
In this case, the total touching perimeter is evaluated as
the sum of the common edges of the inserted item with
the edges of the already inserted items. The common edges
of the item and the loading surface are not taken into
account. The evaluation of the touching perimeter is pre-
sented in Fig. 4: the total touching perimeter of item C

placed in position (wA, 0) is demonstrated by the bold dot-
ted lines and is equal to lC + (wB � wA). Term lC corre-
sponds to the common edges of items C and A and term
(wB � wA) corresponds to the common edges of items C
and B. The item is inserted into the loading position that
maximises the value of the touching perimeter. Following
this rationale, the items initially tend to fill the inner part
of the loading surface, and afterwards cover the edges of it.

Heur5: Min Area heuristic

For each of the feasible available positions of posList,
the area of its corresponding rectangular surface is calcu-
lated, as demonstrated in Fig. 5. The area of the rectangu-
lar surface determined by the loading position (wA, 0) is
equal to (W � wA) � lA, the area corresponding to loading
A

B

DOOR

FRONT

BACK

0

L

0 W

C
(wA,0)

Fig. 3. Calculating the perimeter for the Max Touching Perimeter
heuristic.
position (wB, lA) is equal to (W � wB) � (L � lA), and the
area of the surface corresponding to position (0, lA + lB)
is equal to W � (L � lA � lB). The loading position selected
is the one yielding the minimum surface area. This heuristic
aims at achieving a high degree of utilisation of the avail-
able surfaces.

The proposed five heuristics are employed in the order
presented. The simplest of the heuristics (Bottom-Left Fill

W- and L-) are employed first. If they fail to produce a fea-
sible packing, they are followed by the more complex and
effective Max Touching Perimeter, Max Touching Perime-

ter No Walls, and Min Area heuristics, which require addi-
tional operations for calculating the touching perimeters,
and the rectangular areas, respectively. Preliminary experi-
ments indicated that applying the heuristics in ascending
order of complexity, results into reduction of the overall
computational time demanded by the packing heuristic

Table 1
Pseudocode for the collection of packing heuristics

bool is Feasible (Route rt, Version prVersion)

1 Orderings Ord1, Ord2, Heuristics Heur1, Heur2, Heur3, Heur4,Heur5

2 if (prVersion = Unrestricted)
3 Ord1 = OrdUn (ISrt), Ord2 = OrdSeq (ISrt)
4 else

5 Ord1 = OrdSeq (ISrt), Ord2 = OrdUn (ISrt)
6 end if

7 int ordInd = 1, heurInd = 1
8 if (ordInd < 3)
9 Empty Vehicle, posList = {(0,0)}
10 for each Item it of OrdordInd

11 Determine Position pos 2 posList for it, according to
HeurheurInd

12 if (no feasible pos exists)
13 heurInd = heurInd + 1
14 if (heurInd = 6)
15 heurInd = 1, ordInd = ordInd + 1
16 end if

17 go to 9
18 end if

19 Place it in pos

20 Remove pos from posList, add new loading positions in
posList

21 end for

22 return true

23 end if

24 return false

734 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
bundle. Table 1 provides a pseudocode for the proposed
collection of packing heuristics.
Route p

Route q

i+1

i

i-1

j-1

j

Route p

Route q

i+1

i

i-1

j-1

j

Path linking two vertices Arcs Removed Arcs Created

Fig. 6. Customer relocation move.

Route p Route q

i+1

i

i-1 j-1

j

j+1

Route p Route q

i+1

i

i-1
j-1

j

j+1

Path linking two vertices Arcs Removed Arcs Created

Fig. 7. Route exchange move.
3.2. Constructing the initial solution

The proposed methodology is based on the Best Fit
Decreasing heuristic for the one-dimensional bin packing
problem. It is initiated by constructing an initial feasible
solution that is going to act as the starting point of the
improvement metaheuristic described in the following sub-
sections. To construct this initial solution, the following
procedure is employed: all customers are sorted in decreas-
ing value of ai (total area of the surface of their items) and
vh new routes (one for each available vehicle) are gener-
ated. Customers are selected successively to be inserted into
the routes. The feasibility of inserting a customer i, into
every position of every route is tested. If customer i can
be feasibly inserted into a set of routes Sfeas, for every route
p 2 Sfeas the quantity freeAreap � ai is calculated, where
freeAreap denotes the total non-occupied loading surface
of the vehicle executing route p. The customer is assigned
to the route that minimises the value of freeAreap � ai,
and inserted into the feasible route point that leads to the
minimum cost increase.

Due to the fact that the feasibility of a solution is mainly
determined by the loading constraints of the problem, the
proposed construction algorithm primarily aims at maxi-
mising the loading surface utilisation and secondarily at
minimising the actual objective function of the problem.
This strategy managed to successfully construct feasible
initial solutions for all of the Unrestricted and Sequential

2L-CVRP problem instances.

3.3. Definition of neighbourhood structures

The proposed metaheuristic methodology explores the
search space by performing moves for transiting from the
current to the subsequent solution. We employ three move
types, each of them defining a neighbourhood structure
NSi (i = 1, 2, 3). The size of these neighbourhoods is
reduced by our accelerating strategy introduced in Section
3.5. In the following paragraphs a description of the three
move types is provided.

3.3.1. Move Type 1 (NS1) – customer relocation

This move type (Waters, 1987) relocates a customer
from the route currently assigned to another route
(Fig. 6). The move can be employed for every route pair
and for every possible insertion position. When the move
is performed within a single route, the customer changes
its position within this route.

3.3.2. Move Type 2 (NS2) – route exchange

This move type (Waters, 1987) exchanges the routes that
cover a pair of customers (Fig. 7). It is employed for every
route pair and for every customer pair visited by the routes
involved in the move. When the move is performed within
a single route, the customers swap their positions within
this route.

3.3.3. Move Type 3 (NS3) – route interchanging

The route interchanging move (2-opt) (Croes, 1958; Lin,
1965) can be employed within any single route and between

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 735
any route pair. When employed within a route, two arcs of
the route are removed, two new arcs are generated, and the
section between the created arcs is reversed, as demon-
strated in Fig. 8.

When the move is performed between a route pair, both
routes involved are divided into their initial and terminat-
ing sections, by deleting a pair of arcs. The initial part of
the first route is connected to the terminating part of the
second one and vice versa. To connect the divided sections,
two arcs are generated. These arcs link the last customers
of the initial parts to the first customers of the terminating
parts, as seen in Fig. 9.

The cost for implementing any move mv, involving the
deletion of the edge set ED and the generation of the edge
set EG, is evaluated as

CostðmvÞ ¼
X

ði;jÞ2EG

cij �
X

ði;jÞ2ED

cij: ð1Þ
3.4. Guided Tabu Search

The initial solution produced by the construction algo-
rithm is improved by the proposed metaheuristic method-
ology called Guided Tabu Search (GTS). This
metaheuristic approach is based on the well-known Tabu
Search (TS) methodology (Glover, 1986; Hertz, 2006) that
has proven to be very effective for the VRP and its variants
(Archetti et al., 2006; Brandão, 2006; El Fallahi et al., 2008;
Gendreau et al., 1994, 1999). The proposed Tabu Search is
controlled by a guiding mechanism that incorporates the
Guided Local Search (Voudouris and Tsang, 1996) ratio-
nale and periodically modifies the objective function of
the problem. The purpose of this guiding mechanism is
twofold: it induces diversification, helping the search pro-
Path linking two vertices Arcs CreatedArcs Removed

i-1

ij

j+1
i-1

ij

j+1

Fig. 8. Route interchange move (within a single route).

Route p
Route q

i+1

i

i-1
j-1

j

j+1

Route p
Route q

i+1

i

j-1

j

j+1
i-1

Path linking two vertices Arcs CreatedArcs Removed

Fig. 9. Route interchange move (between a route pair).
cess to cover wider domains of the solution space, and
aims at eliminating undesirable features from the final
solution.

The GTS algorithm starts off with the solution gener-
ated by the construction method of Section 3.2. At each
iteration, one of the three neighbourhood structures
(NS1–NS3) is stochastically selected. All structures share
the same probability of being selected. The cost of perform-
ing every move defined by the selected neighbourhood
structure is evaluated, according to (1). These moves must
lead to feasible solutions regarding the loading and the
capacity constraints of the problem, and must not be Tabu,
unless they improve the best solution ever obtained
through the search (aspiration criterion). The loading feasi-
bility of the tentative solutions is checked using the packing
heuristic bundle described in Section 3.1. The most eco-
nomical of the moves examined is performed. This deter-
ministic criterion may cause cycling phenomena to occur.
To avoid these situations, whenever a move is performed,
its reversal is considered Tabu for tabuTenure iterations.
TS procedure is terminated after completion of tabuIter

non-improving iterations.
Each time guidFreq iterations of TS have been com-

pleted, the proposed guiding mechanism is employed. This
guiding mechanism embodies the rationale of the Guided
Local Search into the Tabu Search process. Its principle
is to locate and remove low quality features present in
the candidate solution by augmenting the objective func-
tion through the use of penalisation terms. In the proposed
methodology-as well as in the majority of routing problem
approaches-long (expensive) edges of the solution are con-
sidered as undesirable features of a candidate solution. In
particular, the arc maximising the following utility function
(2) is selected to be penalised
Uði; jÞ ¼
cij

avgij

1þ pij

; ð2Þ
where avgij is the average cost of all edges starting from
vertices i and j in the edge set A, and pij is the number of
times that arc (i, j) has been selected to be penalised. By
using the term avgij, our utility function (2) improves upon
the most commonly used arc selection strategy that simply
penalises the longest arc present in the solution (i.e. in the
work of Mester and Bräysy (2007)). Term avgij reflects the
positions of customers i and j relatively to their neighbour-
ing customer positions, leading to a more balanced arc
selection behaviour. Let arcPen denote the arc selected to
be penalised. The cost carcPen of the penalised arc is dou-
bled for the next guidFreq/2 iterations of the TS body.
Using this aggressive penalisation policy, we force the
algorithm to eliminate the arcPen from the candidate solu-
tion for at least a number of iterations equal to the penali-
sation horizon (guidFreq/2). If during these guidFreq/2
iterations, a tentative solution containing arcPen improves
the best solution ever encountered, the penalisation term is

Table 2
GTS methodology pseudocode

Solution GTS (Solution initSol)

1 Solution s = initial, s* = initial, s0

2 int nonImp = 0, tabuIter = 7000, bestCost = Cost (initial)
3 int guidFreq = 20, guidCount = 0
4 Cost(s)// Returns the objective function value of solution s
5 Neighborhood NS

6 while (nonImp < tabuIter)
7 stochastically select NS from {NS1, NS2, NS3}, guidCount ++
8 if (guidCount = guidFreq)
9 select arc arcPen for penalisation
10 set carcPen = 2 carcPen, for (guidFreq/2) iterations,

guidCount = 0
11 end if

12 Select a feasible solution s0 2 NS(s) which minimises the total
cost, and is not Tabu, or is Tabu and Cost(s0) < bestCost

13 Implement move mv towards solution s0, s = s0

14 Declare the reversal of mv Tabu for tabuTenure iterations
15 nonImp = nonImp + 1
16 if (Cost(s) < bestCost)
17 s* = s, bestCost = Cost(s)
18 nonImp = 0
19 end if

20 end while

21 return s*

736 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
overridden. After the completion of guidFreq/2 iterations
the cost of arcPen is restored to its original value.

To demonstrate both the effectiveness, and the diversifi-
cation effect of the guiding mechanism employed in the
GTS framework we executed the proposed methodology
for the benchmark instance 18 – Class 2 (presented in Sec-
tion 4.2) using and not using the guiding mechanism.
Fig. 10 illustrates the indicative progress curves obtained.
The grey line corresponds to the search process with the
guiding mechanism, while the black line demonstrates the
search process without the guiding mechanism. The guid-
ing mechanism reduced the best solution cost by 4.26%
(1068.82 with and 1116.40 without the guiding mecha-
nism). Furthermore, the search was diversified, as the stan-
dard deviation of the candidate solutions with and without
the use of the guiding mechanism was 44.57 and 40.53,
respectively. Except for the proposed guiding mechanism
which penalises a single arc of the solution, each time
guidFreq GTS iterations have been performed, we also
tested strategies involving the penalisation of greater arc
sets. These strategies did not manage to achieve high qual-
ity results, as they did not let the search intensify into
promising regions of the solution space. Table 2 provides
a pseudocode for the proposed GTS metaheuristic
methodology.
3.5. Accelerating the search process

To accelerate the search process, we propose two strat-
egies for limiting the computational effort required by the
GTS algorithm. The first strategy reduces the size of the
neighbourhoods explored by the search, at each GTS iter-
ation. For every vertex i, the quantity avgi is evaluated,
where avgi denotes the average cost of all arcs beginning
at vertex i. With each vertex i is associated a set of neigh-
bouring vertices NVi, formed by all vertices j such that:
cij 6 avgi. When a neighbourhood is explored, only the
1020

1070

1120

1170

0 2000 4000

ite

o
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Fig. 10. The role of the
moves leading to the connection of vertices i and j, such
that i 2 NVj and j 2 NVi, are taken into consideration.
The aforementioned policy of reducing the neighbourhood
size is overridden in the case of moves connecting the depot
to any other vertex.

The second accelerating strategy aims at eliminating any
unnecessary calls to the packing heuristic bundle by keep-
ing track of the loading feasibility of the routes already
examined. The loading constraints posed by the 2L-CVRP
problem are handled by the application of the five packing
heuristic algorithms, which drastically contribute to the
overall computational effort required by the proposed
methodology. As the GTS method moves from solution
6000 8000 10000

rations

TS without
guiding mechanism

TS with guiding
mechanism

guiding mechanism.

0
Depot

1 2

1 3

7
false

1
true

5
false

Fig. 11. Loading feasibility memory structure.

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 737
to solution, it needs to examine the feasibility of tentative
routes, in terms of the loading constraints posed by the
2L-CVRP. Since the search has a local character, it may
repeatedly encounter routes that have already been visited
and checked for their loading feasibility by the application
of the packing heuristic bundle of Section 3.1. For these
routes, re-executing the packing heuristics is unnecessary;
therefore, to avoid such duplicate and unnecessary calls
to the packing heuristics procedure, whenever the loading
feasibility of a route is checked for the first time, the corre-
sponding result is recorded in a memory structure, so as to
be available for future stages of the GTS search. To reduce
the time needed for retrieving the stored feasibility infor-
mation, this memory structure was designed in the form
of a sorted tree, as demonstrated in Fig. 11. In particular
Fig. 11 illustrates the case, in which the packing heuristics
managed to generate a feasible loading for route 0-2-3-1-0,
while routes 0-2-1-7-0 and 0-1-5-0 were determined to be
infeasible regarding the loading constraints. As the search
process evolves, if any of these three routes is revisited,
its loading feasibility is going to be determined by accessing
the memory structure, rather than reapplying the packing
heuristic bundle. Using the loading feasibility memory
resulted in a remarkable decrease of the demanded GTS
computational time, ranging from 54% (for small scale
2L-CVRP instances) up to 33% (for larger instances). Note
that, as the search process evolves, the physical memory
required for storing the loading information may exceed
the available memory limits (especially in the cases of larger
2L-CVRP). Therefore, the tree structure may need to be
Table 3
Item set Classes 2–5

Class mi Vertical H

Length Width Le

2 [1, 2] [0.4L, 0.9L] [0.1W, 0.2W] [0
3 [1, 3] [0.3L, 0.8L] [0.1W, 0.2W] [0
4 [1, 4] [0.2L, 0.7L] [0.1W, 0.2W] [0
5 [1, 5] [0.1L, 0.6L] [0.1W, 0.2W] [0
periodically destructed (and rebuilt from the beginning),
after the completion of a number of GTS iterations that
depends on the amount of physical memory available on
the computer system in use. For our computer system with
1 GB RAM, setting the destruction period equal to 2000
GTS iterations did not lead to any memory overflows, even
for the largest instances involving 255 customers.
4. Computational results

The proposed algorithmic framework was coded in
Visual C#, executed on a Pentium IV 2.4 GHz with 1 GB
of RAM under Windows XP. It was tested on 360 2L-
CVRP test problems in total (180 for the Sequential and
180 for the Unrestricted version of the problem).
4.1. Benchmark instances

To test the proposed algorithm’s performance and
robustness we applied it to 180 2L-CVRP benchmark prob-
lems introduced by Iori et al. (2007) and Gendreau et al. (in
press). These instances were derived from 36 CVRP
instances, described by Toth and Vigo (2002), by express-
ing the customer demand as a set of two-dimensional,
weighted and rectangular items. To generate the aforemen-
tioned item sets, five classes of the item demand character-
istics are introduced (Iori et al., 2007; Iori, 2004):

� Class 1: with each customer is associated a single item of
width and length equal to nil. The problems of Class 1
are in fact pure CVRP instances, as every customer
sequence is feasible in terms of the loading constraints
of the problem examined. They are used to test the algo-
rithmic effectiveness in terms of the routing aspects of
the problem examined.
� Classes 2–5: with each customer i, a set of mi items is

generated. mi is uniformly distributed within a given
range. Each item is classified into one of the three shape
categories, namely vertical, homogeneous and horizontal,
with equal probability. The dimensions (width and
length) of an item are uniformly distributed into the
ranges determined by this item’s shape category. The
mi and the dimension ranges are provided in Table 3.

The length L and the width W of the loading surface are
equal to 40 and 20, respectively. The costs of edges are
omogeneous Horizontal

ngth Width Length Width

.2L, 0.5L] [0.2W, 0.5W] [0.1L, 0.2L] [0.4W, 0.9W]

.2L, 0.4L] [0.2W, 0.4W] [0.1L, 0.2L] [0.3W, 0.8W]

.1L, 0.4L] [0.1W, 0.4W] [0.1L, 0.2L] [0.2W, 0.7W]

.1L, 0.3L] [0.1W, 0.3W] [0.1L, 0.2L] [0.1W, 0.6W]

Table 4
Characteristics of the 2L-CVRP benchmark instances

Inst cus Class 2 Class 3 Class 4 Class 5

it vh r% it vh r% it vh r% it vh r%

1 15 24 3 78 31 3 82 37 4 70 45 4 61
2 15 25 5 52 31 5 59 40 5 53 48 5 39
3 20 29 5 68 46 5 77 44 5 62 49 5 54
4 20 32 6 58 43 6 58 50 6 63 62 6 47
5 21 31 4 72 37 4 75 41 4 76 57 5 53
6 21 33 6 54 40 6 63 57 6 72 56 6 46
7 22 32 5 71 41 5 66 51 5 67 55 6 49
8 22 29 5 63 42 5 71 48 5 68 52 6 38
9 25 40 8 57 61 8 61 63 8 60 91 8 53

10 29 43 6 74 49 6 66 72 7 73 86 7 63
11 29 43 6 77 62 7 74 74 7 83 91 7 63
12 30 50 9 62 56 9 52 82 9 66 101 9 58
13 32 44 7 69 56 7 68 78 7 77 102 8 59
14 32 47 7 65 57 7 65 65 7 61 87 8 49
15 32 48 6 76 59 6 84 84 8 72 114 8 72
16 35 56 11 55 74 11 57 93 11 64 114 11 49
17 40 60 14 46 73 14 42 96 14 51 127 14 40
18 44 66 9 72 87 10 75 112 10 77 122 10 58
19 50 82 11 77 103 11 83 134 12 79 157 12 61
20 71 104 14 84 151 15 83 178 16 81 226 16 69
21 75 114 14 84 164 17 82 168 17 70 202 17 61
22 75 112 15 82 154 16 81 198 17 82 236 17 66
23 75 112 14 86 155 16 83 179 16 83 225 16 72
24 75 124 17 81 152 17 77 195 17 82 215 17 66
25 100 157 21 83 212 21 85 254 22 83 311 22 65
26 100 147 19 84 198 20 82 247 20 87 310 20 75
27 100 152 19 84 211 22 82 245 22 78 320 22 71
28 120 183 23 83 242 25 83 299 25 84 384 25 72
29 134 197 24 85 262 26 83 342 28 85 422 28 74
30 150 225 29 83 298 30 87 366 30 86 433 30 70
31 199 307 38 84 402 40 85 513 42 86 602 42 70
32 199 299 38 84 404 39 85 497 39 86 589 39 73
33 199 301 37 85 407 41 84 499 41 87 577 41 71
34 240 370 46 85 490 49 86 604 50 86 720 50 72
35 252 367 45 85 507 50 85 634 50 90 762 50 74
36 255 387 47 86 511 51 86 606 51 83 786 51 74

cus: number of customers.
it: number of items.
vh: number of available vehicles.
r%: total item area/total loading area of the fleet available (%).

738 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
evaluated as the Euclidean distances between vertex pairs.
Table 4 summarises the characteristics of the 36 2L-CVRP
instances for Classes 2–5. For each of the 36 CVRP prob-
lems, five instances were created according to the five clas-
ses presented above (one instance per class), resulting in the
180 2L-CVRP instances. To guarantee the feasibility of the
benchmark problems, the size of the available fleet of vehi-
cles vh was determined by means of a packing heuristic.
The GTS algorithm was applied to all 180 instances for
both the Unrestricted, and the Sequential versions of the
examined problem.

4.2. Parameter tuning

The proposed algorithmic framework, described in Sec-
tion 3, contains three parameters, the setting of which was
determined through an extensive calibration procedure
involving both the Unrestricted and the Sequential versions
of the examined problem. To test the robustness of the
GTS algorithm, we applied it for solving 30 benchmark
instances, for each problem version. In particular, to cover
cases with diverse customer set sizes and item characteris-
tics, we used 30 test problems (instances 6, 12, 18, 24, 30
and 36, Classes 1–5) to conduct the sensitivity analysis
experiments. As there is no obvious correlation between
the calibrated parameters, we valued each of them sepa-
rately, within relative wide value ranges, and recorded the
performance of the GTS methodology. The calibration
procedure conducted is summarised in Table 5.

Parameter tabuTenure expresses the horizon of the
memory employed by the TS procedure. To avoid cycling
phenomena, the reversal of a performed move is declared

Table 6
Calibration experiment results for the tabuTenure and guidFreq parameters

tabuTenure min max %Dev

9 15 21 27

Unrestr 1104.40 1101.28 1099.97 1104.31 1099.97 1104.40 0.40
Seq 1138.77 1136.18 1134.65 1141.07 1134.65 1141.07 0.57

guidFreq

5 10 15 20 25

Unrestr 1121.45 1109.67 1102.15 1097.85 1104.94 1097.85 1121.45 2.15
Seq 1157.06 1147.81 1141.63 1134.09 1141.11 1134.09 1157.06 2.03

Table 5
Sensitivity analysis summary

Parameter Description Range Value

tabuTenure The number of iterations, for which the reversal of a performed move remains in the Tabu list 9–27 18
guidFreq The frequency of employing the guiding mechanism, expressed in TS iterations 5–25 20
tabuIter Maximum number of GTS non-improving iterations 5000–15,000 7000

Range: The value range used for the sensitivity analysis.
Value: The standard parameter setting.

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 739
Tabu for a certain number of iterations equal to tabuTen-

ure. We varied the tabuTenure parameter from 3 to 9 TS
iterations per move type. Since the GTS methodology
explores three neighbourhood structures, the parameter
examined was valued within [9, 27] with increments of 6.
The algorithm was applied 200 times, for all 30 test prob-
lems, and for both problem versions. The average results
obtained are reported in Table 6. The GTS methodology
proved to be relatively insensitive to the tabuTenure value,
as the percent deviation between the best and worst average
scores achieved were 0.40% and 0.57%, for the Unrestricted

and Sequential versions, respectively. The value of 21
yielded the highest quality solutions for five out of the six
examined instances (6, 12, 24, 30 and 36), for the Unre-

stricted version. For the Sequential problem version,
although the value of 21 reached the minimum average
cost, 15 achieved the lowest solution costs for three (12,
18 and 36) out of the six examined instances, followed by
21 that minimised the average solution scores for instances
6 and 30. The percent gap between the average scores
obtained by fixing tabuTenure at 15 and 21 were marginal
(Unrestricted: 0.12% and Sequential: 0.14%). Therefore, to
achieve a robust setting for both problem versions we set
tabuTenure = 18, corresponding to 6 GTS iterations per
move type.

Parameter guidFreq controls the frequency of applying
the guiding mechanism that modifies the objective function
of the problem. The smaller the value of guidFreq, the more
diversified is the conducted search. To achieve a satisfac-
tory interplay between the intensification and diversifica-
tion character of the GTS search process, we performed
the following calibration procedure for parameter guidF-
req: we applied the GTS algorithm 200 times, to solve all
30 aforementioned test problems, for both problem ver-
sions, taking guidFreq values from {5, 10, 15, 20, 25}.
The results are summarised in Table 6. The percent devia-
tion between the best and worst average scores achieved
were equal to 2.15% and 2.03%, for the Unrestricted and
the Sequential versions, respectively, indicating that the
GTS methodology is rather sensitive to the guidFreq

parameter. In particular, setting the guidFreq to 20 resulted
in obtaining the highest quality solutions for nine out of
the twelve instances examined (for both Unrestricted and
Sequential problem versions). Therefore, guidFreq was set
equal to 20.

Regarding the termination condition of the GTS algo-
rithm, we conducted tests taking the values of the tabuIter

parameter from {5000, 7000, 10,000, 15,000}. For small
instances, involving up to 100 customers, rarely did the
search process reach an improving solution after the com-
pletion of 5000 non-improving iterations. For larger scale
problems (instances 28–36), a significant decrease of the
solution cost was occasionally observed after 10000 and
15,000 non-improving iterations, at the expense of exces-
sive computational time. To bind the computational time
required by the GTS methodology into reasonable limits,
we fixed the value of tabuIter to 7000, for which a satisfac-
tory balance between the solution quality and the compu-
tational effort is achieved.
4.3. Results on benchmark instances

To empirically test the effectiveness of the GTS algo-
rithm, we applied it to the 180 benchmark problems of Iori
et al. (2007) and Gendreau et al. (in press), for both the
Unrestricted, and the Sequential problem versions. Since
researchers have only recently addressed the 2L-CVRP,

Table 7
Computational results on the pure CVRP instances of Class 1

Inst Class 1

sGTS sTS_G tGTS tTS_G totGTS %gap

1 278.73 278.73 2.9 2.0 5.2 0.00
2 334.96 334.96 1.4 0.0 2.4 0.00
3 358.40 359.77 3.8 3.5 6.8 0.38
4 430.88 430.88 1.0 0.1 1.7 0.00
5 375.28 375.28 1.3 1.4 2.1 0.00
6 495.85 495.85 1.9 0.3 3.4 0.00
7 568.56 568.56 0.8 0.5 1.3 0.00
8 568.56 568.56 0.4 0.5 0.6 0.00
9 607.65 607.65 1.2 0.4 1.8 0.00
10 535.80 538.79 5.9 6.1 9.1 0.55
11 505.01 505.01 3.8 2.5 6.3 0.00
12 610.00 610.57 6.3 28.5 9.6 0.09
13 2006.34 2006.34 5.8 29.9 10.0 0.00
14 837.67 837.67 17.1 22.2 26.4 0.00
15 837.67 837.67 7.9 1.7 12.7 0.00
16 698.61 698.61 13.0 2.7 22.3 0.00
17 863.27 862.62 32.9 59.0 58.6 �0.08
18 730.85 723.54 47.1 81.9 77.0 �1.01
19 524.61 524.61 100.2 128.8 169.1 0.00
20 244.54 241.97 198.3 253.6 339.3 �1.06
21 687.60 688.18 221.5 325.0 359.1 0.08
22 740.66 740.66 662.9 2070.7 1160.9 0.00
23 839.07 860.47 1531.4 2210.1 2544.1 2.49
24 1035.33 1048.91 1012.7 866.9 1680.7 1.29
25 829.45 830.26 953.8 2371.0 1715.8 0.10
26 819.56 819.56 1031.7 3597.6 1743.1 0.00
27 1097.63 1099.95 871.2 355.9 1556.9 0.21
28 1042.12 1078.27 781.4 985.2 1383.4 3.35
29 1188.15 1179.01 1641.9 3080.0 2790.4 -0.78
30 1037.05 1061.55 873.3 1834.4 1393.1 2.31
31 1421.20 1464.04 631.4 288.8 1089.8 2.93
32 1328.68 1352.61 905.5 1780.8 1528.4 1.77
33 1328.19 1361.51 1708.6 2531.7 2628.1 2.45
34 719.91 858.94 834.1 1941.9 1495.3 16.19
35 877.04 992.86 907.2 766.7 1549.0 11.67
36 594.10 678.87 1492.6 1530.9 2299.3 12.49

avg 1.54

GTS: The proposed algorithmic methodology, TS_G: the algorithm of
Gendreau et al. (in press).
s: The value of the best solution obtained, %gap: the percent improvement
over the TS_G scores.
t: CPU time elapsed when the best solution was obtained (second).
tot: Total time required by the algorithm (second).
Italic characters correspond to higher quality solutions.
GTS: Visual C#, Pentium IV 2.4 GHz, 1 GB RAM, TS_G: C, Pentium IV
1.7 GHz computer.

Table 8
Computational results for the Unrestricted 2L-CVRP (Classes 2–5)

Inst Classes 2–5

sGTS sTS_G tGTS tTS_G totGTS %gap

1 295.74 291.60 2.2 4.2 3.5 �1.42
2 341.89 341.02 1.3 0.1 2.0 �0.26
3 384.49 377.35 0.7 1.6 1.2 �1.89
4 441.45 437.45 2.2 0.5 3.8 �0.91
5 382.22 380.20 4.7 5.0 7.5 �0.53
6 499.47 501.02 4.4 7.2 7.0 0.31
7 703.49 700.34 4.5 6.3 6.8 �0.45
8 705.59 694.99 6.4 11.2 10.2 �1.53
9 615.65 619.69 5.1 3.6 7.7 0.65

10 713.00 700.39 9.5 36.0 16.7 �1.80
11 740.40 739.04 18.1 55.7 31.4 �0.18
12 616.83 620.62 61.9 49.0 93.7 0.61
13 2599.40 2598.20 44.4 57.5 68.5 �0.05
14 1036.77 1047.72 167.4 375.8 299.1 1.05
15 1197.83 1201.38 86.1 156.7 138.3 0.30
16 702.29 702.03 78.3 20.5 132.4 �0.04
17 864.26 866.37 26.4 64.9 45.4 0.24
18 1076.81 1085.84 250.7 589.3 397.7 0.83
19 776.91 772.25 376.5 633.7 570.7 �0.60
20 551.71 564.67 518.7 954.5 839.7 2.30
21 1050.43 1066.21 129.0 460.1 203.8 1.48
22 1076.11 1087.46 941.1 1191.2 1584.6 1.04
23 1091.18 1104.72 1000.8 2032.4 1750.3 1.23
24 1149.12 1187.62 553.5 1454.1 842.4 3.24
25 1418.87 1436.09 635.9 1205.8 965.4 1.20
26 1395.63 1404.49 875.3 1173.9 1403.9 0.63
27 1396.60 1450.18 492.5 521.3 875.6 3.69
28 2737.01 2738.31 1079.1 2051.2 1836.4 0.05
29 2315.20 2474.33 1059.0 1406.5 1653.4 6.43
30 1889.84 1948.72 1711.2 1185.4 2852.4 3.02
31 2413.45 2506.99 2500.7 2375.8 4100.7 3.73
32 2351.69 2486.43 2240.1 1664.8 3597.8 5.42
33 2455.79 2504.00 2074.1 1843.2 3431.2 1.93
34 1233.46 1466.06 2549.7 1359.1 3843.3 15.87
35 1498.78 1765.30 2964.5 2061.7 4183.9 15.10
36 1801.41 1909.88 2680.3 2265.8 4004.3 5.68

avg 1.84

GTS: The proposed algorithmic methodology, TS_G: the algorithm of
Gendreau et al. (in press).
s: The average value of the best solutions for instances of Classes 2–5.
%gap: The percent improvement over the TS_G scores.
t: CPU time elapsed when the best solution was obtained (second).
tot: Total time required by the algorithm (second).
Italic characters correspond to higher quality solutions.
GTS: Visual C#, Pentium IV 2.4 GHz, 1 GB RAM, TS_G: C, Pentium IV
1.7 GHz computer.

740 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
the aforementioned data set is the only one available in the
literature.

The results obtained by the GTS algorithm are summa-
rised and compared with those obtained by the Tabu
Search of Gendreau et al. (in press) (denoted by TS_G)
in Tables 7–9. Table 7 provides the results obtained on
the pure CVRP instances (Class 1), while Tables 8 and 9
summarise the average results obtained on the benchmark
instances of Classes 2–5, for the Unrestricted and the
Sequential versions, respectively. For the pure CVRP
instances the proposed methodology improves the solution
values achieved by the TS_G method by 1.54%, on average.
As seen in Tables 8 and 9, the GTS metaheuristic produces
solutions with higher average quality compared to those
obtained by TS_G. In particular, for the Unrestricted ver-
sion of the problem, the GTS methodology achieved an
average 1.84% improvement of the best solutions obtained
for instances of Classes 2–5. For the Sequential version of
the problem, the GTS algorithm achieved an average
improvement of 1.62%. Regarding the computational effort
demanded, the proposed algorithm obtained the final solu-
tions within satisfactory time periods. The results obtained
for all test problems are reported in Tables A1 and A2 of
the Appendix.

Table 9
Computational results for the Sequential 2L-CVRP (Classes 2–5)

Inst Classes 2–5

sGTS sTS_G tGTS tTS_G totGTS %gap

1 304.22 299.09 2.9 2.6 4.4 �1.72
2 346.71 345.23 1.6 0.4 2.6 �0.43
3 393.35 385.30 2.3 3.8 4.0 �2.09
4 444.62 443.42 2.7 1.4 4.4 �0.27
5 396.36 384.06 6.7 4.1 11.4 �3.20
6 505.04 502.78 3.1 5.1 5.0 �0.45
7 723.83 721.90 18.1 15.5 31.9 �0.27
8 715.72 722.73 21.7 32.8 33.0 0.97
9 622.20 624.06 10.4 10.6 17.3 0.30

10 727.86 714.90 27.9 43.5 49.4 �1.81
11 768.15 773.45 54.0 99.0 94.8 0.69
12 628.62 631.85 81.4 58.8 131.1 0.51
13 2679.34 2687.03 49.2 49.0 87.8 0.29
14 1092.78 1101.49 104.1 146.0 173.2 0.79
15 1234.21 1240.89 41.3 165.4 74.2 0.54
16 707.56 704.85 38.5 28.0 58.1 �0.38
17 865.20 866.50 54.2 88.9 91.5 0.15
18 1102.25 1116.17 255.7 566.5 390.7 1.25
19 800.94 802.48 340.9 365.2 541.2 0.19
20 576.58 581.81 501.4 808.9 848.9 0.90
21 1106.33 1110.19 893.7 1702.2 1539.9 0.35
22 1128.61 1130.33 1314.7 1573.8 2208.3 0.15
23 1151.24 1186.36 766.9 675.8 1190.6 2.96
24 1206.62 1248.43 1376.5 2642.5 2200.3 3.35
25 1479.03 1480.63 2247.4 2336.5 3807.6 0.11
26 1475.96 1471.74 1136.5 1554.6 1984.8 �0.29
27 1463.34 1524.22 805.5 1308.2 1226.1 3.99
28 2835.30 2858.53 1731.4 2576.9 2932.7 0.81
29 2460.74 2575.28 1161.7 1162.5 2026.9 4.45
30 2031.94 2076.20 1318.5 2021.4 2127.5 2.13
31 2554.37 2592.17 1944.2 2102.2 3163.4 1.46
32 2462.45 2605.10 2933.7 2305.2 5009.8 5.48
33 2565.41 2610.55 2531.6 2221.2 4474.1 1.73
34 1303.49 1546.06 4384.1 2184.4 5371.4 15.69
35 1675.35 1985.44 3887.9 2223.1 5004.2 15.62
36 1864.73 1946.66 3158.3 2626.3 5340.4 4.21

avg 1.62

GTS: The proposed algorithmic methodology, TS_G: the algorithm of
Gendreau et al. (in press).
s: The average value of the best solutions for instances of Classes 2–5.
%gap: The percent improvement over the TS_G scores.
t: CPU time elapsed when the best solution was obtained (second).
tot: Total time required by the algorithm (second).
Bold characters correspond to higher quality solutions.
GTS: Visual C#, Pentium IV 2.4 GHz, 1 GB RAM, TS_G: C, Pentium IV
1.7 GHz computer.

Table A1
Results obtained for the Unresticted 2L-CVRP

Instance Class 1 Class 2 Class 3 Class 4 Class 5

1 278.73 305.92 299.70 296.75 280.60
2 334.96 334.96 355.65 342.00 334.96
3 358.40 401.81 409.17 368.56 358.40
4 430.88 440.94 446.61 447.37 430.88
5 375.28 381.85 387.89 383.87 375.28
6 495.85 498.16 499.08 504.78 495.85
7 568.56 741.91 706.99 703.85 661.22
8 568.56 718.18 749.70 711.07 643.43
9 607.65 607.65 622.16 625.13 607.65
10 535.80 708.63 655.70 792.30 695.37
11 505.01 719.56 746.12 843.52 652.42
12 610.00 628.86 610.00 618.23 610.23
13 2006.34 2705.05 2542.86 2714.69 2434.99
14 837.67 1117.24 1092.10 994.66 943.08
15 837.67 1099.75 1186.61 1258.49 1246.46
16 698.61 702.70 698.61 709.27 698.61
17 863.27 870.86 861.79 861.79 862.62
18 730.85 1065.30 1124.54 1171.51 945.88
19 524.61 796.87 816.77 819.79 674.20
20 244.54 569.20 557.72 576.92 503.01
21 687.60 1076.24 1191.07 1019.74 914.68
22 740.66 1088.33 1110.73 1119.34 986.02
23 839.07 1124.60 1141.51 1123.17 975.42
24 1035.33 1234.03 1136.10 1160.92 1065.41
25 829.45 1500.07 1476.14 1486.54 1212.73
26 819.56 1387.30 1436.55 1491.00 1267.68
27 1097.63 1402.42 1476.73 1397.75 1309.50
28 1042.12 2856.93 2867.46 2770.05 2453.59
29 1188.15 2362.75 2249.80 2427.95 2220.32
30 1037.05 1929.93 2038.55 1965.45 1625.42
31 1421.20 2456.28 2478.94 2585.67 2132.92
32 1328.68 2465.17 2422.98 2432.49 2086.13
33 1328.19 2508.68 2595.41 2601.34 2117.72
34 719.91 1268.93 1298.48 1279.65 1086.79
35 877.04 1464.93 1570.67 1634.63 1324.89
36 594.10 1854.06 1965.46 1803.86 1582.25

avg 777.75 1205.45 1217.40 1223.45 1078.24

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 741
5. Conclusions

In the present paper, we study a generalisation of the
VRP, in which the demand of customers consists of
weighted, two-dimensional, rectangular items. This prob-
lem is called Vehicle Routing Problem with two-dimen-
sional loading constraints (2L-CVRP) and aims at
generating the minimum cost routes, and feasibly packing
the transported items onto the loading surfaces of the vehi-
cles. The 2L-CVRP is of particular theoretical interest as it
combines two frequently studied combinatorial optimisa-
tion problems, namely the Vehicle Routing Problem, and
the two-dimensional bin packing problem. Although 2L-
CVRP has several real-life applications in the field of trans-
portation logistics, only recently have the first solution
approaches been published.

Regarding the packing features of the problem exam-
ined, our algorithm makes use of a bundle of packing heu-
ristics, producing diverse packing structures in order to
increase the probability of obtaining a feasible loading.
The routing aspects of the problem are handled by a Tabu
Search method that incorporates the rationale of Guided
Local Search, employing a guiding mechanism that controls
the objective function of the problem. This guiding mecha-
nism drastically diversifies the search conducted by trying to
eliminate low-quality features from the final solution. To
limit the computational effort demanded by the proposed
algorithm, we employ two accelerating strategies. Firstly,
the size of the neighbourhoods explored is reduced, and sec-
ondly, we use a tree memory structure to record the loading
feasibility of visited routes, in order to eliminate any unnec-
essary duplicate calls to the packing heuristic bundle.

742 E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743
To test the effectiveness and the robustness of the proposed
algorithm, we solved a wide variety of 2L-CVRP benchmark
instances. Improvement over several solutions previously
published, demonstrates the capabilities of our methodology.

In terms of future research directions, the problem
examined should be extensively studied. Its formulation
could be extended to cover more operational constraints
such as heterogeneous fleet of vehicles and time windows.
From the methodological point of view, new algorithms
combining both metaheuristic and exact optimisation
methods can be designed.

Acknowledgements

We are indebted to the anonymous referees, for exten-
sively reviewing our paper, and offering constructive re-
marks and directions for the completion of our work.
Appendix

See Tables A1 and A2.

Table A2
Results obtained for the Sequential 2L-CVRP

Instance Class 1 Class 2 Class 3 Class 4 Class 5

1 278.73 319.86 314.33 296.75 285.93
2 334.96 347.73 356.24 342.00 340.88
3 358.40 414.39 413.63 383.11 362.27
4 430.88 451.98 448.24 447.37 430.88
5 375.28 407.45 401.09 399.65 377.26
6 495.85 499.08 509.65 515.60 495.85
7 568.56 764.45 712.57 723.78 694.54
8 568.56 730.87 749.70 727.58 654.74
9 607.65 611.49 644.54 625.13 607.65
10 535.80 740.43 671.24 770.82 728.95
11 505.01 748.96 783.92 868.01 671.71
12 610.00 638.06 610.57 655.60 610.23
13 2006.34 2778.28 2660.74 2748.57 2529.77
14 837.67 1185.52 1139.74 1036.37 1009.49
15 837.67 1120.00 1188.63 1329.39 1298.80
16 698.61 704.58 708.83 718.21 698.61
17 863.27 870.86 861.79 864.58 863.58
18 730.85 1092.60 1133.13 1199.03 984.23
19 524.61 819.80 839.19 854.50 690.26
20 244.54 576.24 583.17 614.73 532.17
21 687.60 1137.92 1267.29 1070.05 950.06
22 740.66 1143.24 1168.11 1169.14 1033.96
23 839.07 1212.71 1193.57 1185.41 1013.28
24 1035.33 1325.92 1168.25 1238.44 1093.88
25 829.45 1542.71 1554.00 1544.76 1274.63
26 819.56 1406.07 1499.53 1674.14 1324.11
27 1097.63 1512.41 1518.69 1448.80 1373.48
28 1042.12 2822.69 2954.63 2928.88 2635.00
29 1188.15 2518.99 2318.45 2590.22 2415.33
30 1037.05 2002.71 2304.98 2139.16 1680.91
31 1421.20 2542.41 2644.98 2759.44 2270.65
32 1328.68 2537.87 2521.68 2603.47 2186.76
33 1328.19 2572.98 2677.29 2811.12 2200.25
34 719.91 1302.54 1379.90 1374.86 1156.65
35 877.04 1564.85 1671.31 2072.36 1392.88
36 594.10 1914.94 2004.45 1871.24 1668.30

avg 777.75 1246.77 1266.06 1294.51 1126.05
References

Archetti, C., Speranza, M.G., Hertz, A., 2006. A Tabu Search algorithm
for the split delivery Vehicle Routing Problem. Transportation Science
40 (1), 64–73.

Baker, B.S., Coffman, E.G., Rivest, R.L., 1980. Orthogonal packings in
two dimensions 1980. SIAM Journal on Computing 9 (4), 846–855.

Brandão, J., 2006. A new Tabu Search algorithm for the Vehicle Routing
Problem with backhauls. European Journal of Operational Research
173 (2), 540–555.

Burke, B.S., Kendall, G., Whitwell, G., 2004. A new placement heuristic
for the orthogonal stock-cutting problem. Operations Research 52,
655–671.

Chazelle, B., 1983. The bottom-left bin packing heuristic: An efficient
implementation. IEEE Transactions on Computers C-32, 697–
707.

Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S., 2004.
New heuristics for the Vehicle Routing Problem. In: Langevin, A.,
Riopel, D. (Eds.), Logistics Systems: Design and Optimisation.
Springer, New York.

Croes, G., 1958. A method for solving traveling salesman problems.
Operations Research 6, 791–812.

El Fallahi, A., Prins, C., Calvo, R.W., 2008. A memetic algorithm and a
Tabu Search for the multi-compartment Vehicle Routing Problem.
Computers and Operations Research 35 (5), 1725–1741.

Fekete, S.P., Schepers, J., van der Veen, J., 2007. An exact algorithm for
higher-dimensional orthogonal packing. Operations Research 55 (3),
569–587.

Gendreau, M., Hertz, A., Laporte, G., 1994. A Tabu Search heuristic for
the Vehicle Routing Problem. Management Science 40, 1276–1290.

Gendreau, M., Iori, M., Laporte, G., Martello, S., in press. A Tabu Search
heuristic for the Vehicle Routing Problem with two-dimensional
loading constraints. Networks, doi:10.1002/net.20192.

Gendreau, M., Iori, M., Laporte, G., Martello, S., 2006. A Tabu Search
algorithm for a routing and container loading problem. Transporta-
tion Science 40 (3), 342–350.

Gendreau, M., Laporte, G., Potvin, J.-Y., 2002. Metaheuristics for the
VRP. In: Toth, P., Vigo, D. (Eds.), The Vehicle Routing Problem.
SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia.

Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, E., 1999. Parallel Tabu
Search for real-time vehicle routing and dispatching. Transportation
Science 33 (4), 381–390.

Gendreau, M., Hertz, A., Laporte, G., 1992. New insertion and post-
optimization procedures for the traveling salesman problem. Opera-
tions Research 40, 1086–1094.

Glover, F., 1986. Future paths for integer programming and links to
artificial intelligence. Computers and Operations Research 13, 533–
549.

Hertz, A., 2006. Anniversary focused issue of Computers and Operations
Research on Tabu Search. Computers and Operations Research 33,
2447–2448.

Iori, M., 2004. Metaheuristic algorithms for combinatorial optimization
problems. PhD Thesis, DEIS, University of Bologna.

Iori, M., 2005. Metaheuristic algorithms for combinatorial optimization
problems. 4OR 3, 163–166.

Iori, M., Salazar Gonzalez, J.J., Vigo, D., 2007. An exact approach for the
Vehicle Routing Problem with two dimensional loading constraints.
Transportation Science 41 (2), 253–264.

Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell
System Technical Journal 44, 2245–2269.

Lodi, A., Martello, S., Vigo, D., 1999. Heuristic and metaheuristic
approaches for a class of two-dimensional bin packing problems.
INFORMS Journal on Computing 11, 345–357.

Martello, S., Monacci, M., Vigo, D., 2003. An exact approach to the strip
packing problem. INFORMS Journal on Computing 15, 310–
319.

http://dx.doi.org/10.1002/net.20192

E.E. Zachariadis et al. / European Journal of Operational Research 195 (2009) 729–743 743
Martello, S., Vigo, D., 1998. Exact solution of the two-dimensional finite
bin packing problem. Management Science 44, 388–399.

Mester, D., Bräysy, O., 2007. Active-guided evolution strategies for large-
scale Capacitated Vehicle Routing Problems. Computers and Opera-
tions Research 34 (10), 2964–2975.

Moura, A., Oliveira, J.F., An integrated approach to the vehicle routing
and container loading problems. Working Paper No. 2/2007, Institute
for Systems and Computers Engineering at Coimbra (INESCC),
University of Coimbra, Portugal.

Prins, C., 2004. A simple and effective evolutionary algorithm for the
Vehicle Routing Problem. Computers and Operations Research 31
(12), 1985–2002.

Rochat, Y., Taillard, E.D., 1995. Probabilistic diversification and inten-
sification in local search for vehicle routing. Journal of Heuristics 1,
147–167.
Tarantilis, C.D., Kiranoudis, C.T., 2002. BoneRoute: An effective
memory-based method for effective fleet management. Annals of
Operations Research 115, 227–241.

Tarantilis, C.D., 2005. Solving the Vehicle Routing Problem with adaptive
memory programming methodology. Computers and Operations
Research 32, 2309–2327.

Toth, P., Vigo, D., 2002. The Vehicle Routing Problem. SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia.

Voudouris, C., Tsang, E., 1996. Partial constraint satisfaction problems
and Guided Local Search. In: Proceedings of the Second International
Conference on Practical Application of Constraint Technology
(PACT’96), London, pp. 337–356.

Waters, C.D.J., 1987. A solution procedure for the vehicle scheduling
problem based on iterative route improvement. Journal of Operations
Research Society 38, 833–839.

	A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints
	Introduction
	The problem
	The proposed algorithm
	Packing heuristics bundle
	Constructing the initial solution
	Definition of neighbourhood structures
	Move Type 1 (NS1) - customer relocation
	Move Type 2 (NS2) - route exchange
	Move Type 3 (NS3) - route interchanging

	Guided Tabu Search
	Accelerating the search process

	Computational results
	Benchmark instances
	Parameter tuning
	Results on benchmark instances

	Conclusions
	Acknowledgements
	References
	Appendix

