
Towards a computer-assisted proof for chaos

in a forced damped pendulum equation ⋆

Tibor Csendes and Balázs Bánhelyi

University of Szeged, Institute of Informatics, Szeged, Hungary
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Abstract

We report on the first steps made towards the computational proof of the chaotic
behavior of the forced damped pendulum. Although, chaos for this pendulum was
being conjectured for long, and it has been plausible on the basis of numerical
simulations, there is no rigorous proof for it. In the present paper we provide com-
putational details on a fitting model and on a verified method of solution. We also
give guaranteed reliability solutions showing some trajectory properties necessary
for complicate chaotic behaviour.
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1 Introduction

One important question while studying computational approximations of so-
lutions of differential equations is whether the given equation has chaotic so-
lutions. That would imply that the numerical simulation must be carried out
carefully, considering fitting measures against possible distraction due to accu-
mulated rounding errors. Unfortunately, the recognition of chaotic behaviour
has remained a hard to recognize feature that is usually studied by theoretical
means [4]. There are a few exceptions such as Neumaier et al. [7,9] and the
Polish team of Zglicynski [3,10].
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Fig. 1. An illustration of the studied forced damped pendulum, the angle x and the
corresponding speed x′ are indicated.

In our recent studies [1,2] we investigated the chaotic regions of some Hénon
systems. We were able to present new chaotic regions for some Hénon systems,
and also we could provide positive measure sets of mapping parameters that
allow chaos within the earlier reported chaotic regions obtained for single
parameter values only.

In the present paper we attack the problem of forced damped pendulum (see [4]
and the references therein). This pendulum has been conjectured to be chaotic
without a formal proof. Now we present a fitting verified numerical technique
capable to prove extraordinarily complicated and unstable behaviour. For ex-
ample, we can make our pendulum go through any specified sequence of gy-
rations by correctly choosing the initial conditions (see the details later).

Consider the forced damped pendulum, which is a mechanical system of one
degree of freedom consisting of a mass point of mass m hung with a weightless
solid rod of length l. This means that the point is forced to move along a
vertical circle of radius l (see Figure 1) under the action of a gravitational
field of force g, some friction proportional to the velocity, and the periodic
external force A cos t (A = const.). It is known [4] that motions of this system
are described by the second order differential equation

mlx′′ = −mg sin x − γlx′ + A cos t,

where t denotes the time, x is the angle of the pendulum, x′ is the angle
velocity, and 0 < γ = const. denotes the damping coefficient. Suppose that
the parameters are chosen so that the equation of motion is

x′′ = − sin x − 0.1x′ + cos t.

The most effective way of studying the behaviour of this dynamical system is
to take a “snapshot” of the x−x′ plane at each period 2π of the driving force.
Such a “snapshot” is called a Poincaré section (see the illustration on Figure 2
and [8]). We take the Poincaré sections at the moments t = 2nπ, where n is an
integer. Mathematically, we iterate the so called Poincaré map P : R2 → R2
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Fig. 2. The Poincaré sections for the forced damped pendulum problem. These are
periodic intersections of the extended phase space t - x - x′ projected to the x - x′

plane.

defined by (x(0), x′(0)) 7→ (x(2π), x′(2π)). Fixed points of the Poincaré map
correspond to 2π-periodic solutions of our system of differential equations. An
attracting fixed point of the Poincaré map is called a sink. It corresponds to
a 2π-periodic solution such that in its neighbourhood all the solutions of the
system tend to this periodic solution as t → ∞. If a 2π-periodic solution x̃

has the property that some solutions tend to x̃ as t → ∞, and some other
solutions tend to x̃ as t → −∞, then x̃ (and the corresponding fixed point
of the Poincaré map) is called a saddle. Saddle points play an important role
in the detection of chaos; e.g., it was also the case for the Hénon mapping
studied earlier by the authors [1,2] but also by others (e.g. [4,10]).

Let −1, 0, and 1, respectively, denote the event that, during one time interval
Ik = [2kπ, 2(k + 1)π], the pendulum crosses the downward position exactly
once clockwise, it does not crosses the downward position, and it crosses the
downward position once counterclockwise, respectively. One form of chaos is
when we may arbitrarily prescribe the consecutive events of these types for a
motion. More precisely, for every bi-infinite sequence . . . , ǫ−2, ǫ−1, ǫ0, ǫ1, ǫ2, . . .,
where ǫk ∈ {−1, 0, 1}, there exists a point (x0, x

′

0) such that, to the solu-
tion determined by these initial conditions, event ǫk happens during the time
interval Ik = [2kπ, 2(k + 1)π].

Following the notion applied in [4] we define three rectangles Q−1, Q0, and Q1

in the x − x′ plane, each containing the k-th saddle point (k = −1, 0, 1). We
illustrate the Qk rectangles on Figure 3. These are compressed in the direction
of the stable manifold and stretched in the direction of the unstable manifold.

To make the first step to prove the property mentioned above, we aim to
prove now that for an arbitrary sequence of three indices i1, i2 = 0, and i3
(i1, i3 ∈ {−1, 0, 1}) there exists a point (x0, x

′

0) ∈ Q0 such that the trajectory
determined by (x0, x

′

0) is exactly in Qi1 , Q0, and Qi3 at t = −2π, 0, and 2π,

3



Q
1


t


Q
0


Q
-1


Q
0


Q
0


Q
-1


Q
-1


0


6.28


6.28


6.28


6.28


-6.28
 Q
1


Q
1


2


2


2


x'


x'


x'


x


x


x


Fig. 3. The Poincaré sections with the Qi rectangles studied in the present approach,
together with the indicated trajectory related to the Q1 – Q0 – Q0 sequence.

respectively. This is a kind of chaotic behaviour, and the later complete proof
can be based on such a verified computer procedure for the realization of an
arbitrary bi-infinite sequence.

2 An interval method to locate regions with chaotic features

In this section we introduce an inclusion function based verified procedure
to prove the existence of points the related trajectories of which follow given
patterns on the Poincaré sections. Our method applies a verified algorithm to
solve initial value problems for systems of ordinary differential equations. This
technique is responsible to guarantee that solutions starting from an interval
stop inside a given aimed set at t = 2π. Once we are able to solve this problem
(allowing overestimations and as a consequence, having uncertain answer for
some larger intervals) we can compose a framework algorithm to search sys-
tematically for subintervals of the search domain that fulfill all the prescribed
set theoretical containment conditions. This way of posing the problem is in
full accordance with the problem setting used for the Hénon mapping chaos
issue [1,2].

The applied algorithm encloses first the set Q0 in a 2 dimensional interval I.
This will be the starting interval. Then an adaptive subdivision technique gen-
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Algorithm 1 : The Checking Routine

Inputs: – ε: the user set limit size of subintervals,

– Q: the argument set to be proved,

– Q−, Q+: the aimed sets.

(1) Calculate the initial interval I, that contains the regions of interest
(2) Push the initial interval into the stack
(3) while ( the stack is nonempty )
(4) Pop an interval v out of the stack
(5) Calculate the width of v

(6) Determine the widest coordinate direction
(7) Calculate the transformed intervals w1 = T−(v) and w2 = T+(v)
(8) if v ⊂ Q, w1 ⊂ Q− and w2 ⊂ Q+, then

(9) print that the condition is fulfilled by v and stop

(10) else If the width of interval v is larger than ε, and
(11) v ∩ Q 6= ∅ and w1 ∩ Q− 6= ∅ and w2 ∩ Q+ 6= ∅ then

(12) bisect v along the widest side: v = v1 ∪ v2 and
(13) push the subintervals into the stack
(14) endif

(15) endif

(16) end while

(17) print that the search was unsuccessful and stop

erates such a subdivision of the starting interval that either for all subintervals
(of a user set small size) one of the given conditions does not hold (at least
for one point of the respective set), or it is shown that a subinterval exists,
that complies with the given conditions. In Algorithm 1 the transformation
T− and T+ shift the argument interval to intervals that enclose the solutions
of the differential equation of the pendulum for a −2π and 2π long time inter-
vals, respectively. Since the present algorithm locates a subinterval that fulfills
some conditions (the complement of the Hénon chaos case), we can refer to
the correctness and finiteness results proven for this algorithm in [2].

3 Numerical results and conclusion

We calculated the inclusion of a solution of the differential equation with the
VNODE algorithm [6] and based on the Profil/BIAS interval environment [5].
To be able to represent the integration limits we transformed the differential
equation. The applied form of the differential equation was:

INTERVAL a(1.0);

INTERVAL b = a/((REAL)10.0);

INTERVAL Pi = ArcSin(a)*((REAL)2.0);

yprime[0] = Pi;

yprime[1] = (y[2])*Pi;

yprime[2] = (-a*sin(y[1])-b*y[2]+cos(y[0]))*Pi;
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Fig. 4. The Qi rectangles in the x - x′ plane studied in the present approach, together
with the enclosures of the trajectory related to the Q1 – Q0 – Q0 sequence.

In this way we had to calculate the differential equation in time between -2
and 2 (both are computer representable).

A representative result for the Q1–Q0–Q0 sequence is depicted on Figure 4. The
Qi rectangles in the x - x′ plane studied in the present approach are displayed
with the enclosures of the trajectory related to the Q1–Q0–Q0 sequence. The
trajectory starts from Q0, its preimage is in Q1, and its image in Q0.

The full set of results obtained is comprised in Table 1. The lines contain the
proven subintervals of Qi, Q0, and Qj. Q0 contains only such points which be-
long to a trajectory that passes the rectangles according to the given sequence
(indicated in the first column). The Qi and Qj intervals include the preimage
and image points that belong to Q0. The interval bounds are rounded (to
save space). The original bounds are validated. The total computation time
required is given next in seconds. All the values in this column are accept-
able, between 6 and 16 minutes on an average PC. The last column contains
the number of subintervals generated and checked. These figures show again
a moderate memory requirement. All the data together are quite encouraging
for the complete proof of chaos.

Finally Figure 5 provides the result of the adaptive subdivision for the Q1–
Q0–Q0 sequence: the search interval is displayed containing the Q0 rectangle
together with the generated and checked subintervals. The dense set shows
where the solution subinterval has been found (cf. Table 1).

Summarizing our experiences we can conclude that the described adaptive
subdivision method could well utilize the verified differential equation solver
VNODE to form an efficient tool that will be the core algorithm for the com-
plete proof of chaotic behaviour in the case of the forced damped pendulum.
The obtained result can be formalized as follows:

Assertion 1 For the investigated forced damped pendulum all possible triplets

of the form Q−, Q0, Q+, where Q−, Q+ ∈ {Q−1, Q0, Q1}, can be realized by

proper selection of the starting point p within Q0, such that P−1(p) ∈ Q−, P (p) ∈
Q+.
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aimed preimage / original / image CPUt No. of

sets intervals (s) boxes

Q0

Q0

Q0

[2.317648, 2.709306] [−0.050055, 0.342587]

[2.628677, 2.629443] [0.021484, 0.021973]

[1.076006, 1.253059] [−1.048104,−0.964307]

383 1390

Q1

Q0

Q0

[7.632088, 7.660986] [−0.512440,−0.483095]

[2.696904, 2.698438] [−0.047852,−0.046875]

[0.990481, 1.369249] [−1.100671,−0.899117]

363 1615

Q−1

Q0

Q0

[−2.894219,−2.710906] [1.155728, 1.233331]

[2.607979, 2.609512] [0.041992, 0.042969]

[1.028439, 1.405768] [−1.086193,−0.880000]

402 1595

Q0

Q0

Q1

[2.284252, 2.669446] [−0.003131, 0.381040]

[3.751748, 3.752515] [1.072266, 1.072754]

[7.173756, 7.188131] [−1.052968,−1.048956]

694 3178

Q1

Q0

Q1

[7.556686, 7.831820] [−0.896126,−0.595137]

[3.875938, 3.888203] [1.062500, 1.070313]

[7.265608, 7.524591] [−1.042681,−0.922727]

356 1364

Q−1

Q0

Q1

[−2.811017,−2.345166] [1.059322, 1.274043]

[3.719551, 3.722617] [1.078125, 1.080078]

[7.186581, 7.247708] [−1.049464,−1.030382]

561 2292

Q0

Q0

Q−1

[2.342858, 2.729911] [−0.079739, 0.311653]

[1.421279, 1.422046] [−0.881836,−0.880859]

[−1.755311,−1.745855] [1.595219, 1.602129]

1001 5258

Q1

Q0

Q−1

[7.704982, 8.076489] [−0.812236,−0.355093]

[1.520938, 1.533203] [−0.968750,−0.953125]

[−2.091369,−1.911043] [1.343996, 1.492038]

384 1462

Q−1

Q0

Q−1

[−2.798045,−2.243367] [0.960221, 1.221012]

[1.404414, 1.410547] [−0.847656,−0.843750]

[−1.877814,−1.815990] [1.502639, 1.548777]

652 2853

Table 1
The obtained intervals the points of which coincide with trajectories that pass the
respective, prescribed sets (Qi, Q0, Qj) in the given order. The necessary CPU time
in seconds and the checked number of subintervals are also provided.
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Fig. 5. The search interval containing the Q0 rectangle with the subintervals gener-
ated and checked by our algorithm. The dense set indicates the solution subinterval
that has been included in Table 1.
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to locate chaotic regions of a Hénon system. In preparation. Available at
http://www.inf.u-szeged.hu/∼csendes/henon.pdf

[3] Z. Galias and P. Zgliczynski, Computer assisted proof of chaos in the Lorenz
equations. Physica D, 115(1998) 165-188.

[4] J.H. Hubbard, The Forced Damped Pendulum: Chaos, Complication and
Control. American Mathematical Monthly, 8(1999) 741-758.
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