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Abstract 

Feasibility study on batch extractive distillation is based on analyzing profile maps. The 

existence and location of singular points and separatrices in these maps depend on process 

parameters. The limiting flows of the process are related to those parameter values where the 

map changes shape. Graphical tools can be used to roughly estimate these values. If a 

singularity is not found using graphical methods, one cannot guarantee that a singularity does 

not exist. Reliable computation of all zeroes of a nonlinear multidimensional function can be 

used to determine these points. This can be accomplished using interval arithmetic. An 

interval arithmetic based branch and bound optimizer is applied to find the singular points and 

bifurcations. All the singular points of the maps at specified process parameters are found in 
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this way. Limiting flows are determined with the same methodology by finding the 

bifurcation points and the corresponding parameter values. 

Keywords: interval arithmetic, extractive distillation, feasibility, bifurcation, profile map 

Introduction 

Batch extractive distillation (BED) is a unit operation applicable to separate close boiling and 

azeotrope forming mixtures. The separation is performed using a third liquid component 

called entrainer. The entrainer can be either the least volatile, the most volatile, or even the 

intermediately volatile component in the ternary system
1
. This paper deals with separating 

minimum boiling azeotropes applying a heavy entrainer. Figure 1 illustrates the model 

arrangement.  

The process itself is performed as follows
2
. The charge is first put in the still vessel, and the 

column is heated up with total reflux. As a result, the top composition approaches the 

azeotrope. The entrainer is continuously fed to the column in the next step, but distillate is not 

yet produced. The bottom composition moves toward the entrainer vertex because most of the 

entrainer accumulates in the still vessel. Once the top composition reaches its specified value, 

production is started with a well-designed reflux ratio (R=L/D) and feed ratio (F/V). Almost 

pure component A is produced in this step. As a result of distillate removal, the still 

composition turns toward the BE edge of the composition triangle. During this step, the 

distillate composition roughly remains constant. 

Feeding of the entrainer is stopped when distillate purity starts decreasing. The receiver is 

changed, and an off-cut is removed. As a result, the still becomes free of component A. 

Component B is then distilled out with conventional batch distillation, and the entrainer 

remains in the still. 

                                                                                                                                                                                     
* Author/s to whom correspondence should be addressed: E. R. Frits and E. Rev 
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Feasibility of the process depends on R and F/V. Simulation or experimental trials with 

randomly selected parameter values typically lead to the conclusion that the process is 

infeasible although it is really feasible with appropriately selected process parameters. This is 

why limiting values of these parameters are important to explore. 

The appropriate process parameters can be roughly estimated by analyzing profile maps. The 

location of the singular points, and the parameter values where some singular points appear or 

disappear, play a key role in assessing feasibility. Appearance and disappearance of singular 

points are called bifurcations. The singular points, especially the saddle points, cannot always 

be determined with satisfactory precision. Some details of the map are missed because 

unstable nodes are not determined. 

Bifurcation cannot always be recognized because the computed maps are not detailed enough. 

More precise determination of their loci involves extensive computation with a finer mesh in 

the studied composition and parameter domain. Existence of a singular point cannot be 

excluded merely on the basis of not finding it with a given mesh over the studied domain. In 

contrast to this lack of information, interval arithmetic has the potential of excluding the 

existence of some solutions and of finding the bifurcation points according to their 

mathematical criteria. 

Graphical feasibility methodology 

The feasible domain of R and F/V, as well as the feasible region of still compositions, can be 

estimated by analyzing the profile maps
2-4

.  

Such a map includes a curve approximating the rectifying profile started from a specified 

distillate composition xD. This curve can be computed by numerically solving the differential 

equation (1) with initial value xD: 
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where h is dimensionless height, L is liquid flow rate, y
*
(x) is equilibrium vapor composition, 

and y(x) is actual vapor composition according to the column's component balance (operating 

line) above the feed: 
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The map also includes a sequence of curves approximating the extractive profiles started from 

potential still compositions. Such a curve can be computed by numerically solving the same 

differential equation (1) in the reverse direction with the potential still composition xS as 

initial value, and with the actual vapor composition determined according to the balance 

(operating line) below the feed: 
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Any still composition xS is called feasible if the computed extractive profile meets the 

rectifying profile. 

Feasibility studies are usually started with computing and visualizing the profile maps at total 

reflux, with several different feed ratios. When F/V approaches zero in equation (3) at total 

reflux (R=∞), a limit map is formed. This limit map is equivalent to the reversed direction 

residue curves map. All these limit curves start from the neighborhood of vertex E, pass either 

vertex B or vertex A, and approach the azeotropic composition. Vertex E is an unstable node 

UN; the azeotrope is a stable node SN; vertices A and B are saddle points S1 and S2, 

respectively. 

As the feed ratio (F/V) changes, saddle points S1 and S2 move along the binary AE and BE 

edges, respectively. The unstable node UN remains in place, but SN moves in the interior of 



 5/25 

the triangle.  Stable node SN moves along the isovolatility curve, and reaches the BE edge at 

some particular feed ratio. This is demonstrated numerically by Safrit el al.
5
, and proven 

theoretically by Lelkes et al.
2
. 

The extractive profile computed from the still composition should meet the rectifying profile 

if it is a part of a feasible column profile. In order to obtain such an intersection between the 

two profiles, stable node SN should move down very near to the AE edge. If it actually 

reaches the edge then all the extractive profiles meet the rectifying profile.  

The extractive profile approaches SN if there are enough stages in the extractive section. 

Thus, practically constant distillate purity can be maintained while component A is gradually 

boiled out from the still. Consequently, the process is feasible at a given reflux ratio if the 

feed ratio is greater than some minimum. This minimum can be determined by computing and 

visualizing the extractive profiles from a single still composition with increasing F/V, as 

illustrated in Figure 2, because all the extractive profiles approach the same stable node at a 

given F/V. 

Feasibility of the BED process is more complicated at finite reflux ratios. First, there is a 

reflux ratio below which the rectifying profile is too short. This is shown in Figure 3. There is 

a sudden change in the length of the rectifying profile at some reflux ratio. Second, saddle 

point S2 from the BE edge moves in the interior of the triangle, and four separatrices is 

formed as is shown in Figure 4.  

The pair of separatrices connecting the BE edge with SN through S2 does not involve any 

obstacle against feasibility, but the other pair form a feasibility border because the extractive 

profiles to their left do not move toward SN. The still composition cannot be shifted across 

this border if the specified distillate composition is to be maintained. Thus, this pair of 

separatrices constitutes a constraint to the still composition and, therefore, a constraint against 

total recovery of component A. 
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Interval methodology 

Interval methodology is a tool to find reliably all the solutions of a system of equations, or all 

the global minimizers of a multivariate real function over a given domain. Robust interval 

methods are reliable in the sense they find all solutions in the studied region. If no solution is 

found in a domain then no solution exists there. If a solution cannot be excluded from a 

domain then its existence is either proven or probable. The latter case occurs if local 

minimum of a real function is such a small positive value that it can approximately be 

considered zero, and then its minimizer can be considered as a zero of this function. In some 

degenerate cases, there is an exact zero but it cannot be proven numerically. For example, 

f(x) = (x-1/3)
4
 has an exact zero value at 1/3, but 1/3 is not a member of the finite set of 

machine numbers. Since f(x) does not have negative value, the existence of a zero cannot be 

proven, nor is it excluded, however. 

Conventional search for zeros of a real function f(x), i.e. solutions of the equation f(x) = 0, 

leads to a sequence of real numbers x
(0)

, x
(1)

, …, x
(k)

, …etc., each of which is considered as an 

approximation of the root x
*
. Such a sequence is either convergent or not, depending on the 

properties of the function and on the initial value x
(0)

. If the sequence is convergent, it has a 

limit point x
*
. Even if it is convergent, it may alternatively converge to several different limit 

points x
*(1)

, x
*(2)

, … depending on the initial value x
(0)

, if several zeroes exist. Moreover, it 

may happen that the sequence converges to a limit cycle of points x
*(1)

, x
*(2)

, …, x
*(n)

; i.e., it 

may be attracted by a finite set of points in a way that these points are visited in a fixed order 

in an infinite loop. Dependence of the convergence on the initial value and on some 

parameters of f(x) may show up fractal properties, as is pointed out by Feigenbaum
6
, and 

subsequently by others, e.g. Lucia et al
7
.  

Other methods applicable to find zeroes and global minima with mathematical exactness are 

available in the literature, see for example the αBB method of Floudas and co-workers
8
 or the 
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terrain method of Lucia and co-workers
9
. These can be considered as ‘reliable’ because they 

are exact in mathematical sense. These methods are computationally more effective, i.e. 

faster, than interval methodologies. On the other hand, these methods do not consider the 

finite set of numbers used in digital computers. 

Interval methodology is applied in the present article to reliably find all the points in question 

considering both mathematical exactness and the finite set of machine numbers. 

Interval algebra does not compute or approximate the point values of real functions but 

approximates from outside the range of the real function over an interval. Multivariate 

intervals are rectangular sets, called boxes. The value of a so-called interval extension F(X) of 

a real function f(x) over an interval or box is also an interval. Point values are then 

parenthesized in as narrow intervals as possible. In practice, interval methods try to compute 

the lowest upper bound and the highest lower bound of the function over a given box. Such a 

computation is not always possible; good bounds are looked for, instead. In any way, the 

value of an interval function should be an outer bounding of the range of f over X: 

 XxXFxf ∈∈ if)()( . (4) 

Equation (4) is called ‘inclusion’ property. Any well defined real function can be extended in 

such a way that its interval version is defined over some interval domain, and the resulted 

interval is an outer bounding of the range of f over X. If the inclusion property holds, F(X) is 

called an inclusion function. 

The picture is complicated with the technical difficulty that the set of real numbers are 

approximately represented by a finite subset of machine numbers. Care should be exercised to 

compute rounding always to outwards (outward rounding); i.e. round up for the upper bound, 

and round down for the lower bound, in order not to lose a solution by excluding it from the 

studied interval just because of improper rounding. 
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The usual operations of addition, subtraction, multiplication, and division are well defined on 

interval sets. Division with an interval that contains zero can also be defined as one resulting 

two (a positive and a negative) semi-infinite intervals. Elementary functions can be defined 

over intervals, as well. Some interval methods need the knowledge of the interval versions of 

the derivatives of the studied function. To achieve the enclosures of the derivatives of f in an 

easy and automatic way, automatic differentiation techniques are often built into interval 

arithmetic routines. Automatic differentiation (see e.g. Rall
10

) is an algorithmic tool that 

produces the derivative values parallel to the computation of the original function. Thus, 

analytical differentiation prior to the computations is not needed, neither the numerical 

differentiation based on finite differences. 

The central difficulty raised by the interval inclusion functions is that the resulting enclosures 

usually overestimate the range. The overestimation is caused by the fact that in most cases 

intervals corresponding to the same real variable occur more than once in an arithmetic 

expression, which is called the dependency problem. The most common basic principles 

applicable to obtain better enclosures for a given function are the reformulation of the 

arithmetic expression in order to decrease variable dependency, and the application of more 

advanced interval inclusion functions (e.g. the ones using higher order derivatives) instead of 

the natural interval extension.  

Interval algebra has been developed in the last decades to such a stage that it can successfully 

be applied to reliably solve small scale problems of root finding, minimization, integration, 

etc. Middle scale problems have also been solved in some particular cases. Multiple solutions 

are found by systematically partitioning the studied interval, and then evaluating the 

subintervals. 

Modern development of interval methodologies goes back to Moore
11

. Several good 

introductions to interval algebra, interval root search, interval minimization, etc. are already 
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available. See, for example, Alefeld et al.
12

, Neumaier et al.
13

, Hansen et al.
14

, Hammer et 

al.
15

, or Alefeld et al.
16

 Interval software tools have also been developed
17

. 

The idea of applying interval methodology for determining global optima and roots has 

already found its way to the community of chemical engineering, as well. Lot of chemical 

engineering applications are published by Stadtherr and co-workers
18-26

. 

Interval arithmetic is a convenient tool to be applied in branch and bound optimization 

algorithms, since the lower and upper bounds of the objective and constraint function values 

over a box are calculated in an easy and reliable way. A prototype interval B&B algorithm for 

finding all solutions of the bound constrained global minimization problem 

 
0

)(min

Xx

xf

∈
 (12) 

is as follows: 

 

• Step 1: Let L be an empty list, let A:=X0 be the current box to be investigated, and set 

the iteration counter to k:=1. Set the upper bound of the global minimum f 
u
 to be the 

upper bound of F(X0). 

• Step 2: Subdivide A into s sub-boxes A1,…,As. Evaluate the inclusion function F(Ai) 

for all the new subintervals, and update the upper bound of the global minimum f 
u
 as 

the minimum of the old value and the smallest upper bound of the objective function 

values F(Ai), i=1,…,s. 

• Step 3: Delete those parts of the new subintervals that cannot contain a global 

minimizer (“accelerating tools”). 
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• Step 4: If the remaining subintervals satisfy the stopping criterion, then add them to 

the list S holding the enclosures of candidate solutions, otherwise add them to the list 

L. 

• Step 5: If L is empty, then return; S contains the enclosures of all global minimizers, 

and the enclosure of the global minimum is [f 
l
, f 

u
], where f 

l
 is the smallest lower 

bound of the function values among the elements of S. 

• Step 6: Set A to be that of the subinterval from the list L which has the smallest lower 

bound on F, and remove this subinterval from the list.  

• Step 7: Let k:=k+1 and go to Step 2. 

 

For solving our problems, we decided to use an already ready-made and available interval 

optimization tool, the one recently developed at the University of Szeged. The algorithm itself 

is an improved version of the global optimization procedure of the C-XSC Toolbox
15

 and it is 

implemented using the Profil/BIAS interval arithmetic library of Knüppel
27

. The interval 

inclusion functions are evaluated with a combination of the natural interval extension and a 

first order centered (mean-value) form
28

. The accelerating methods (Step 3 of the prototype 

algorithm) are the so-called monotony, mid-point, cut-off, and concavity tests, and a step of 

the interval Newton-Gauss-Seidel iteration, all discussed in Hammer et al.
15

 The interval 

subdivision rule is the one named as ‘C/3’ in Markót, Csallner, and Csendes
29

. The stopping 

criterion of Step 4 is based on the width of the particular box: if all its components have the 

width smaller than a prescribed value 10
-2

- 10
-12

, depending on the particular application, then 

the box is inserted to S. 

Beside the basic branch-and-bound procedure, the algorithm contains a verification 

procedure
30

 based on the interval Newton-step to check the existence and local uniqueness of 
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the candidate optimizers. Further details of the algorithm can be found in articles by Markót, 

Csallner, and Csendes
29 

and Csallner, Csendes, and Markót
31

. 

Note, that the above global optimization algorithm can be applied to solve both minimization 

problems and root finding problems, because any root-finding problem 

 ),...,2,1(0),...,,( 21 Nixxxf Ni ==  (5) 

can be re-formulated as an optimization problem 

 ( )∑
=

N

i
if

1

2min xx . (6) 

If (5) has a solution then it is a (global) minimizer of (6) because the sum of squares cannot be 

negative. That is, if the global minimum of (6) is guaranteed to be positive over a given 

search domain than (5) has no solution in that domain. All over our study, we apply this re-

formulation for determining zeroes of equations. 

The numerical computations were run on a Pentium IV PC (with 1 Gbyte of RAM and a 1.4 

GHz CPU) under Linux operating system. 

Thermodynamic model and data of an example problem 

We consider separating acetone (component A) from methanol (component B), a mixture 

forming minimum boiling azeotrope at about xAcetone=0.821, with the use of water (component 

E) as entrainer. 

The vapor-liquid phase equilibrium is modeled with a modified Raoult-Dalton equation in the 

form of 

 { }( )EBAipxPy iiii ,,; ∈=∗ �γ , (7) 
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where pure component vapor pressure pi
o
 is computed with the three-parameter Antoine 

equation 

 { }( )EBAi
CT

B
Ap

i

i
ii ,,;

14.273
lg ∈

+−
−=� , (8) 

and the activity coefficients γi are computed with the three-parameter NRTL model in the 

form of 
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Here Uij are the binary interaction parameters (energy differences), and αij=αji are the binary 

non-randomness parameters. For mathematical completeness, the well-known model above is 

supplemented with the requirement of summing up the mole fractions to unity: 

 
{ }

1
,,

=∑
∈ EBAi

ix , (12) 

 
{ }

1
,,

=∑
∈

∗

EBAi
iy . (13) 

The model parameters are collected in Tables 1 and 2.  

All over our study, the specified distillate composition is xD = [0.94, 0.025, 0.035] (acetone, 

methanol, water). Pure water is applied in the entrainer feed, i.e. xF = [0.0, 0.0, 1.0]. 
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Thus, the rectifying profile and the extractive profiles are modeled with differential equations 

with algebraic constraints, i.e. differential-algebraic equations (DAE-s). These are the system 

 (1), (2), and (7) to (13), (RP) 

for the rectifying profile, and the system  

 (1), (3), and (7) to (13) (EP) 

for the extractive profiles.  

The profiles and their pinch points can be computed even outside of the composition triangle, 

but this opportunity is constrained to a small neighborhood around the triangle because of the 

mathematical form of the model equations 7 to 13. Thus, we searched for pinch points up to 

xMethanol ≥ -0.1; but no farther. 

Singular points 

We are interested in determining the reflux ratio at which the length of the rectifying profile 

suddenly jumps. Here the number of pinch points changes from one to three, through a single 

point where this number is just two. Thus, we would like to find all the singular (pinch) points 

of the rectifying profile at given R.  

We are also interested in finding (F/V)min at finite R. For this aim, we have to determine the 

loci of the singular points of the extractive profiles, the number of singular point, and the feed 

ratio at which the number of such points in the triangle decreases from four to two. The 

location of S2 is also important for guessing maximal recovery. 

Singular points of (RP) and (EP) are characterized by a zero value of the differentials in 

Equation (1). This is fulfilled when the right hand side equals zero, i.e. when 

 ( ) ( ) 0xyxy =∗− . (14) 
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Thus, singular points of (RP) satisfy the following algebraic equation system: 

 (2), and (7) to (14). (SRP) 

Singular points of (EP) satisfy the following algebraic equation system: 

 (3), and (7) to (14). (SEP) 

Equation systems (SRP) and (SEP) are reformulated in the same way as equation (5) is 

reformulated to an optimization problem (6). Values of Uij, αij=αji , Ai, Bi, Ci (i, j ∈ {A, B, 

E}), RG, P, and R are given; values of γI, pi
0
 τi, Gij, xi, yi, y

*
i, (i, j ∈ {A, B, E}), xE and T are 

unknown in case of SRP. Feed ratio F/V is an additional given value in case of SEP. The 

equation systems are transformed to global minimization problems. The independent 

variables are xA, xB, and T. The searched box is {[0, 1], [0, 1], [200, 500]}. (Temperature is 

measured in Kelvin.) The depending variables are expressed and substituted. The objective 

function is ( )
{ }
∑

∈

−
EBAi

ii yy
,,

2* . 

The whole range is not searched in one step. Instead, the composition triangle is preliminary 

subdivided to 7 smaller subranges. The search is facilitated in this way. In some cases, this 

range is extended to include physically meaningless concentrations outside the triangle 

because the structure of the phase map can be better understood using information on the 

existence of singular points around the triangle. For this aim, the lower bound 0 of a mole 

fraction is changed to -0.1. The range of at most a single variable is extended this way at each 

time. 

Singular points of the rectifying profile (SRP) 

Pinch points of the rectifying (enriching) profiles described by (RP), i.e. solutions of (SRP), 

are found relative easily by the solver.  
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The interval arithmetic tool is able to find all the pinch points at any specified R. As a result, a 

bifurcation diagram is plotted and shown in Figure 5. Stable points are denoted by squares 

lined up along imagined curves of negative slope. Unstable nodes are denoted by triangles 

lined up along an imagined curve of positive slope.  

This bifurcation diagram explains the sudden change in the length of the rectifying profile. As 

the profile starts at a high xA value, and evolves with decreasing xA, the profile stops in the 

higher stable branch if R is smaller than 0.629. At higher reflux ratio, the profiles stop in the 

lower stable branch. 

The rightmost standing square at about R ≈ 0.629 and xAcetone ≈ 0.7 is not found by this 

method. The nearer R is specified to this value, the longer time is consumed by the solver. In 

fact, no solution was reached in a week. This phenomenon must be caused by the fact that a 

bifurcation appears here.  

Singular points of the extractive profiles map (SEP) 

Pinch points of the extractive profiles described by equation system (EP), i.e. solutions of 

(SEP) are also found relative easily by the solver.  

Four singular points of the extractive map are located in the arbitrary small neighborhoods of 

the three vertices and the azeotrope if total reflux is applied and F/V approaches zero. How 

these points are shifted with increasing F/V is shown in Figure 6. These points are determined 

using the interval arithmetic optimization tool with stepwise incremented F/V. The stable 

node originated from the azeotrope moves along the isovolatility curve, and meets another 

point moving from the acetone vertex along the acetone/water edge. The F/V value at which 

this meeting happens is (F/V)min. At higher values the stable point moves on the same edge 

toward the water vertex. As a result, all the extractive profiles arrive to this point and cross 

the rectifying profile, with the consequence of feasibility. 
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All the singular points move in the interior of the triangle at decreasing R. Singular point 

paths are show in Figure 7 with R=4. Unstable node UN originated from the water vertex is 

shifted so little that it practically remains located there. Stable node SN does not move along 

the isovolatility curve but seems coming from a point on the acetone / methanol edge, close to 

the azeotrope point. Saddle S1, originated from the acetone vertex, does not move on the base 

line. SN and S1 meet inside the triangle at some particular F/V depending on R. As F/V is 

increased further, both SN and S1 disappear. 

Such a bifurcation occurs at F/V≈0.207; this is (F/V)min if R=4 is specified (Figure 7). Above 

this value the extractive profiles are directed toward a point somewhere outside the triangle. A 

second bifurcation happens at F/V≈0.55. A new stable point SN- appears outside the 

physically meaningful composition triangle and moves toward the water vertex. There is also 

another saddle, S-, as its counterpart.  

The most striking result is that the stable node originated from the azeotrope does not reach 

the acetone/water edge. Whereas the minimum feed ratio at total reflux (R=∞) can be 

determined by tracing the location of SN in function of F/V to the A/E edge, this method 

cannot be applied in case of finite reflux ratio because SN never touches the base line. 

Instead, such an F/V is looked for at which SN and S2 meet to disappear because above this 

value the attractive point is outside the triangle. 

All the mentioned singular points are determined with stepwise incremented F/V. The 

bifurcation points can not be exactly determined in this way. The nearer F/V is specified to 

this value, the longer time is consumed by the solver.  

Search for bifurcation points with interval methodology 

Bifurcation points cannot be well approximated by simply determining the singular points 

with stepwise incremented parameters because computation time increases to infinity as the 
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bifurcation point is approximated. Instead, the criterion of bifurcation is applied as a new 

constraint in the model. 

The character of a singular point can be analyzed with linearizing the differential equation in 

its neighborhood. Accordingly, Equation (1) is approximated by  

 Ax
x
=

hd

d
, (15) 

where matrix A is the Jacobian computed at the singular point x. 

Bifurcation points are characterized with zero real part of at least one eigenvalue of the 

Jacobian
32-35

. 

All the singular points are characterized with real eigenvalues only in our case because the 

temperature changes monotonously along the solution of the autonomous differential 

equation. No focus may appear in the map. Consequently, irregularity is simply indicated by a 

zero determinant of A. In this case, the criterion of bifurcation is: 

 0)det( =A . (16) 

The entries of the Jacobian A cannot be simply computed because the right hand side of 

Equation (1) depends on T which, in turn, depends implicitly on xA and xB. The equilibrium 

temperature T cannot be algebraically discarded. In practice, we have the following relations: 
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where T is an implicit function ϑ of xA and xB: 

 ( )BA xxT ,ϑ=  (18) 

In order to determine the partial derivatives, the chain rule can be applied: 
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The partial derivatives of fi according to the mole fractions can be expressed analytically, but 

the partial derivatives of ϑ according to the mole fractions are difficult to determine because 

function ϑ is not known explicitly. However, the implicit function theorem can be applied. 

The bubble temperature T is determined according to the criterion of equilibrium expressed as 

Equations (7) and (13). Combination of these two equations leads to the criterion 
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The differential of P according to mole fraction xA or xB should be zero because P is specified 

as a constant: 

 },{0
d

d

},{

BAk
T

p

xxTT
pxpp

BAi

i
i

k

E

k

iEi
iiEEkk ∈=














+








∂

∂
−

∂

∂
+

∂

∂
−

∂

∂
+− ∑
∈

�

��� γ
γγγγ

γγ . (21) 

From here, the derivatives of T can be determined as 
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Thus, the bifurcation points of (RP) can be located by finding the roots of the equation system  

 (2), (7) to (12), (14), (16), and (19) (BRP) 

and the bifurcation points of (EP) can be located by finding the roots of the equation system 

 (3), (7) to (12), (14), (16), and (19) (BEP) 
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There are several ways for numerically locating bifurcation points. Applications are available 

in the chemical engineering literature
36-39

. Interval methodology is also applied, see for 

example Tolsma and Barton
40

, Gehrke and Marquardt
41

, or Gwaltney et al.
42

  

In the present article, however, simple singular points and bifurcations are determined with 

the same tool. Equation systems (BRP) and (BEP) are reformulated in the same way as 

equation systems (SRP) and (SEP) are, but the objective function as appended with the square 

of the determinant: ( )
{ }

( )2
,,

2* )(Det A+−∑
∈ EBAi

ii yy  

The results are collected in Tables 3 and 4. The numbers shown in these tables are lower and 

upper bounds to the exact values according to the applied model. All the displayed digits are 

valid due to the outward rounding methodology. The upper bounds are shown below the 

lower bounds; the identical leading digits are underlined for easy comparison. The same 

convention is applied in Figures 6 to 7. Although so many digits seems meaningless in 

practice, one can be sure that the solution is somewhere between the two bounds. 

Conclusions 

An interval arithmetic based branch and bound optimization tool is applied to analyze 

feasibility of batch extractive distillation. Using this tool, we are able to reliably find all the 

singular points of the profile maps. This tool is also successfully applied to find bifurcation 

points. 

Studying the extractive profiles map of the acetone (A) – methanol (B) – water (E) system, 

we find that there are four singular points (two saddles, a stable node, and an unstable node) 

at higher reflux ratios. At total reflux and increasing feed ratio, the two saddles move along 

the AE and the BE edges, respectively, toward the water vertex (component E); the stable 

node meets the saddle on the AE edge, and they change stability. At finite reflux ratio, the 

singular points are found inside the triangle; the stable node and the saddle point initiated 
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from vertex A collide, and bifurcation occurs. Both colliding singular points vanish after the 

collision, and the profiles lead out from the triangle through the AE edge. The minimum feed 

ratio can be determined via computing the bifurcation point. The reflux ratio at which the 

rectifying profile suddenly changes its length can be found in the same way. 
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Notation 

Variables 

a  element of the Jacobian matrix 

A, B, C  Antoine coefficients in Equation (8). 

A, B, E  components 

D  distillate flow rate 

f(x,T) right hand side of Equation (1), taking into account the explicitly unknown boiling 

point 

f(x)  real function 

F(X)  interval extension of f(x) 

F  entrainer flow rate 

F/V  feed ratio 

G, U  parameters in the NRTL equation 

h  dimensionless height 

L  liquid flow rate 

N  number of components (in the NRTL equation) 
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P  total pressure 

p°  vapor pressure of a pure component 

R  reflux ratio 

S  saddle 

SN  stable node 

T  temperature 

UN  unstable node 

V  vapor flow rate 

X  interval 

x, x  mole fraction in liquid phase 

y(x)  actual mole fraction in gas phase (operating line) 

y
*
(x)  equilibrium mole fraction in gas phase 

Greek symbols 

γ  activity coefficient 

( )xϑ   bubble point function of the mole fractions  

τ, α  parameters in the NRTL equation 

 

Subscripts and superscripts 

*  vapor-liquid equilibrium 

°  pure component 

A, B, E  component A, B, E 

D  distillate 

F  feed 

i, j  component i, j 

min  minimal (ratio) 
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S  still 

SN  stable node 
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Figure 1. BED in a rectifier 
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Figure 2. The path of the stable node SN can be determined by computing extractive profiles 

started from the same single point. 
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Figure 3. Sudden change in the length of the rectifying profile 
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Figure 4. Profiles map at finite reflux ratio (feed ratio is above minimum) 
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Figure 5. Plot of xAcetone component of the found singular points in function of R 
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Figure 6. Singular point paths with evolving F/V at total reflux 
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Figure 7. Singular point paths with evolving F/V at R=4 

 

 

 


