
Constructing large feasible suboptimal

intervals for constrained nonlinear

optimization∗

Tibor Csendes†, Zelda B. Zabinsky‡, Birna P. Kristinsdottir‡

May 3, 2005

Abstract

An algorithm for finding a large feasible n-dimensional interval
for constrained global optimization is presented. The n-dimensional
interval is iteratively enlarged about a seed point while maintaining
feasibility. An interval subdivision method may be used to check feasi-
bility of the growing box. The resultant feasible interval is constrained
to lie within a given level set, thus ensuring it is close to the optimum.

The ability to determine such a feasible interval is useful for ex-
ploring the neighbourhood of the optimum, and can be practically
used in manufacturing considerations. The numerical properties of
the algorithm are tested and demonstrated by an example problem.

Key words: Constrained Nonlinear Optimization, Sensitivity Analysis, In-
clusion Function, Interval Arithmetic.

Running head: Constructing feasible suboptimal intervals.

AMS Subject Classifications: 90C30, 65K05.

∗This work was supported by the Grants OTKA 2879/1991 and OTKA 2675/1991, and
in part by NSF Grant DDM-9211001, the Boeing Commercial Airplane Company and the
NASA-Langley Research Center.

†Kalmár Laboratory, József Attila University, Szeged, Hungary
‡Industrial Engineering Program, University of Washington, Seattle WA, USA

1



1 Introduction

1.1 Problem setting

Consider the nonlinear optimization problem (P)

minimize f(x)

subject to gj(x) ≤ 0 j = 1, 2, . . . , m,

where f(x) : IRn → IR and the constraint functions gj(x) : IRn → IR are
continuous nonlinear functions, and n is the dimension of the problem. Let
us denote the set of feasible points by A, that is A := {x ∈ IRn : gj(x) ≤ 0
for each j = 1, 2, . . . , m}. Also let x∗ be an optimal solution for problem (P).

It may happen that the optimal solution x∗, or an approximation of it, is
known, yet this result is not suitable for practical use. For example, consider
an engineering design problem which is formulated as a constrained global
optimization problem, see for example [8], [12] and [17]. It is possible that
the optimal design cannot be reproduced exactly with current manufacturing
processes, thus each variable has a specific manufacturing tolerance, δ > 0.
Since the optimal solution x∗ may be on one or more active constraints, then
the n-dimensional interval [x∗

i − δ, x∗

i + δ] for i = 1, 2, . . . , n is not feasible.
From a practical point of view, it is preferable to find a feasible suboptimal
box instead of a single optimal point. Thus we seek a feasible n-dimensional
interval X∗ for which gj(x) ≤ 0, j = 1, 2, . . . , m, for all x ∈ X∗. It is also
desirable to have this feasible box as close to the optimum as possible. Thus
we also impose the constraint f(x) ≤ f(x∗)+ε for some ε > 0 for all x ∈ X∗.
Such an interval would also reflect the sensitivity of the objective function
[3, 7, 14] because the size of the feasible box may vary as ε varies.

We restate our problem: find an n-dimensional interval X∗ such that for
all x ∈ X∗

f(x) ≤ fε ≡ f(x∗) + ε, and (1)

gj(x) ≤ 0 for j = 1, 2 . . . , m. (2)

Methods discussed in earlier papers [4, 5, 6] study similar problems. In
[4, 5] an interval method was introduced to find a bounding interval of the
level set of an unconstrained nonlinear optimization problem. The algorithm
converges to the smallest n-dimensional interval containing the specified level

2



set. Another technique [6] locates the boundary of a level set in a given
direction. Kearfott discussed an interval branch and bound method for bound
constrained global optimization [10]. In a recent study [16] the solution of a
difficult nonlinear optimization problem (in an alternate form) was reported
by using a customized interval subdivision scheme. These methods provide
a guaranteed reliable solution, although they are computationally tractable.
They are based on inclusion functions and interval arithmetic, which will be
reviewed next.

1.2 Inclusion functions and interval arithmetic

Inclusion functions [1, 15] offer a theoretically reliable and computationally
tractable means of locating a feasible suboptimal interval. An inclusion func-
tion provides more information over an interval than could be conveyed with
independent real function evaluations. The inclusion function gives upper
and lower bounds on the objective function over the specified interval. We
next discuss background and notation for inclusion functions and interval
arithmetic.

Let f(x) : IRn → IR be a continuous function. The set of compact real
intervals (pairs of reals a and b such that a ≤ b) is denoted by I and the
set of n-dimensional compact intervals is denoted as In. An n-dimensional
interval X ∈ In is a parallelepiped with sides parallel to the coordinate axes.
In this text X will usually be referred to as a box. The range of f(x) over an
n-dimensional interval X is denoted as f(X) and defined as

f(X) = {f(x) : x ∈ X}.

The function F (X) : In → I is called an inclusion function of f(x), if
F (X) ⊇ f(X) for every X ∈ In. The width of a one-dimensional interval
[a, b] is denoted as

w([a, b]) = b − a.

For an n-dimensional interval X ∈ In the width is defined as the maximum
length of the edge of the box, that is

w(X) = max{w(Xi) : i = 1, ..., n}

where Xi is the i-th coordinate interval of X. We assume that all inclusion
functions mentioned are isotone, which means, if F : In → I is an inclusion

3



function then
X ⊆ Y implies F (X) ⊆ F (Y )

for all X, Y ∈ In. An inclusion function F (X) is said to be of order α > 0 if
there is a real constant c such that

w(F (X))− w(f̄(X)) ≤ cw(X)α

for every X ∈ In.
Finding the range for a function over an n-dimensional interval has in

general the same complexity as the original optimization problem, because
we have to find the extreme values of the function over the interval. By
using interval arithmetic it is possible to find bounds on the function values
more efficiently. The interval operations can be carried out using only real
operations. For example, interval addition is defined as: [a, b] + [c, d] =
[a+c, b+d]. If outside rounding is also applied, then the calculated resulting
interval contains every real number that can be a result of the given function
on real numbers inside the original intervals. For example, the function
f(x1, x2) = x1 + x2 is continuous and f(x) : IR2 → IR. Now consider the 2-
dimensional box X = {(x1, x2) : x1 ∈ [a, b], x2 ∈ [c, d]}. Then the inclusion
function defined by interval arithmetic is F (X) = [a, b]+ [c, d] = [a+ c, b+d]
which gives precisely the range of f(x). The technique of producing an
inclusion function by substituting the real variables and operations by their
interval equivalent is called natural interval extension [1, 15].

Many programming languages are now available that support interval
datatypes with the corresponding operations and intrinsic functions [2, 9, 11,
13]. These programming environments provide a convenient access to inclu-
sion functions (with automatic outside rounding), but one can also simulate
interval operations and functions by subroutines in any algorithmic language.
We used the natural interval extension to calculate the inclusion functions.
For more information about inclusion functions and interval arithmetic, see
[1, 15].

4



2 The algorithm and its convergence

2.1 The algorithm

The algorithm iteratively grows a box about a given seed point. A seed point
xseed, which lies interior to the region of feasibility and in the ε-level set must
be provided to start the algorithm. Thus the seed point, xseed, must satisfy
the following conditions:

f(xseed) < fε and (3)

gj(x
seed) < 0 for each j = 1, 2, . . . , m. (4)

This will imply that there exists a feasible box with a positive volume con-
taining the seed point. It is possible to construct nonlinear optimization
problems for which no proper seed point exists which satisfies (3) and (4).
In such cases the search for feasible suboptimal boxes also makes no sense.

Seed points can be obtained in several ways. One way is to find an
approximation of x∗, and if it is interior to the feasible region, use it as
xseed. If it lies on an active constraint, search along the normal of the active
constraint to generate xseed. Another way is to sample randomly (a normal
distribution may be appropriate) around the optimal point until a feasible
interior point is found. This may be used as xseed. A slight variation would
be to sample according to a uniform distribution in the interval hull of the
feasible region intersected with the ε-level set. The first feasible point with
objective function value less than fε would be used as xseed.

We will call an interval X a feasible interval around xseed, if xseed ∈ X and
equations (1) and (2) are satisfied for all x ∈ X. An interval will be called
maximal regarding xseed, if it is a feasible interval around xseed, and there is
no other feasible interval that contains it. Note that there may exist many
maximal feasible boxes around a seed point. Also note that two different
seed points may be contained in the same maximal feasible box.

It may appear disturbing that there is not a unique relationship between
xseed and a maximal feasible box around xseed. For an example, suppose the
set of feasible points with objective function values less than or equal to fε

is an ellipse. Suppose xseed is interior to the ellipse. Then there is an infinite
number of feasible boxes around xseed which do not contain one another
(see Figure 1). At some point, it may be interesting to find the maximal

5



feasible box around xseed that has the largest volume. However at this point
the algorithm does not find the largest volume box around a seed point,
but simply a maximal feasible box. In our application to manufacturing
tolerances this is not a disadvantage. It is more desirable to compare trade-
offs between coordinate lengths of various maximal boxes, than it is to know
the box with largest volume, as this has no meaning for the application.

We call an interval Y strongly feasible, if f(y) < fε, and gj(y) < 0 for all
y ∈ Y (j = 1, 2, . . . , m).

Figure 1. Illustration of multiple boxes within the ε-level set.

The main algorithm discussed in this paper is presented below. The algo-
rithm uses parameters d(i, 1) and d(i, 2) for i = 1, 2, . . . , n and η, which are
set at the beginning to positive reals. To start, d(i, 1) and d(i, 2) must be
larger than η. The stopping criterion indicates that the algorithm should
stop increasing the size of the actual box X, when the change along each
coordinate is less than the threshold η in all directions.

Main algorithm

Step 0 Initialize interval vector Xi = [xseed

i , xseed

i ], and d(i, j) ≥ η > 0 for
all i = 1, 2, . . . , n and j = 1, 2.

Step 1 For i = 1 to n do:

Step 2 Set Yj = Xj for j = 1, 2, . . . , n; j 6= i, and

Yi = [min(Xi) − d(i, 1), min(Xi)].

6



Step 3 Use the checking routine to check whether f(y) < fε and gj(y) < 0
(j = 1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set X =
X ∪ Y . Otherwise d(i, 1) = (min(Xi) − max(Zi))/2, where Z is the
interval passed back by the checking routine as not strongly feasible.

Step 4 Set Yj = Xj for j = 1, 2, . . . , n; j 6= i, and

Yi = [max(Xi), max(Xi) + d(i, 2)].

Step 5 Use the checking routine to check whether f(y) < fε and gj(y) < 0
(j = 1, 2, . . . , m) for each y ∈ Y . If the answer is yes, then set X =
X ∪ Y . Otherwise d(i, 2) = (min(Zi) − max(Xi))/2, where Z is the
interval passed back by the checking routine as not strongly feasible.

Step 6 End of i-loop

Step 7 Stopping criterion: if the number of inclusion function calls is less
than 100,000, and there is an i = 1, 2, . . . , n such that either d(i, 1) ≥ η
or d(i, 2) ≥ η then go to Step 1.

Step 8 Print X, and STOP.

The core of the algorithm is the checking procedure called in Steps 3 and
5. This is a version of the interval subdivision method modified to check
whether the actual box Y lies entirely in the region satisfying equations (1)
and (2). The parameter θ is set to a small positive real value. The relation
d(i, j) ≥ θ must hold, or else the interval Y will always be rejected in Step
1. The checking procedure is in detail:

Checking routine

Step 0 Initialize the list L to be empty.

Step 1 If the width of Y is less than θ, then go to Step 7.

Step 2 Evaluate the inclusion functions F (Y ) and Gj(Y ) for each j =
1, 2, . . . , m.

Step 3 If max F (Y ) ≥ fε or max Gj(Y ) ≥ 0 for any j = 1, 2, . . . , m, then
go to Step 5.

7



Step 4 If the list L is empty, then go to Step 6, else put the last item of
the list L into Y , delete this item from the list, and go to Step 1.

Step 5 Subdivide Y into subintervals U and V , set Y = U , put V into the
list L as the last member, and go to Step 1. The subdivision should
be made, such that the largest side of Y is halved.

Step 6 RETURN that the checked interval was strongly feasible.

Step 7 RETURN Z = Y , and that the checked interval was not strongly
feasible.

If the checking routine indicates, that the checked interval is not strongly
feasible, this means more precisely that a very small not strongly feasible
subinterval was found. By properly setting θ, the place where the strong
feasibility is violated can be located.

2.2 Convergence results

In this section the convergence properties of the algorithm introduced are
investigated to provide theoretical background for the numerical implemen-
tations. First the checking routine is studied.

Lemma 1 1. If the checking routine accepts an interval Y as strongly fea-
sible, then f(x) < fε, and gj(x) < 0 for each x ∈ Y , and j = 1, 2, . . . , m.

2. If the checking routine rejects an interval Y as not strongly feasible,
then there exists a nested set of intervals, Y = Y 1 ⊃ Y 2 ⊃ . . . ⊃ Y p generated
by the routine, with the smallest interval having width less than θ, such that
one of the conditions max F (Y i) < fε or max Gj(Y

i) < 0 was violated
for each Y i in the nested set of intervals, where i = 1, 2, . . . , p and j =
1, 2, . . . , m.

Proof. 1. If an interval Y is returned by the checking routine as a strongly
feasible one, then Y must have been covered by subintervals Y 1, Y 2, . . . , Y p

in such a way that w(Y i) ≥ θ, max F (Y i) < fε, and max Gj(Y
i) < 0 for each

j = 1, 2, . . . , m, and i = 1, 2, . . . , p.
If one of the conditions max F (X) < fε or max Gj(X) < 0 was violated for

an actual interval X, then X had to be divided. In this way only subintervals

8



of X can appear in the final set of covering intervals Y 1, Y 2, . . . , Y p, and not
X itself. No point of X can be lost however during the subdivision procedure,
since the union of the actual interval and the intervals on the list is decreased
only in Step 4 after finding the actual interval strongly feasible.

Consequently, for every x ∈ Y there exists a Y i (i = 1, 2, . . . , p) such that
x ∈ Y i,

f(x) ≤ max F (Y i) < fε, and

gj(x) ≤ max Gj(Y
i) < 0

for each j = 1, 2, . . .m.
2. The proof follows immediately from the subdivision procedure in the

checking routine. 2

Notice that only the inclusion property of F and Gj was utilised in the proof
of Lemma 1, and no further requirement (like isotonicity or convergence order
of the inclusion functions involved) was necessary.

Lemma 2 Assume that

w(F (X)) → 0 as w(X) → 0, and (5)

w(Gj(X)) → 0 as w(X) → 0 (6)

for all j = 1, 2, . . . , m.
1. If f(x) < fε and gj(x) < 0 for every x ∈ Y and j = 1, 2, . . . , m, then

there exists a threshold value θT > 0 such that for all θ: 0 < θ < θT the
checking routine stops after a finite number of iteration steps and it states
that Y is strongly feasible.

2. If θ > 0 and there is a point x ∈ Y such that f(x) ≥ fε or gj(x) ≥ 0 for
any j = 1, 2, . . . , m, then the checking routine will stop after a finite number
of iteration steps and it states that Y is not strongly feasible.

Proof. 1. Assume that the checking routine does not stop in a finite
number of steps. Then there must be an infinite embedded subsequence
Xk, k = 1, 2, . . . of generated intervals inside Y . Denote the condensation
point of the subsequence by x. The assumed properties (5) and (6) imply
that lim∞

k=1
max F (Xk) is equal to f(x), which is less than fε. Similarly

lim∞

k=1
max Gj(X

k) is equal to gj(x) < 0 for each j = 1, 2, . . . , m. These

9



facts, however, contradict the infinity of the sequence, since each member of
it should have been generated in Step 5 of the checking routine after finding
them not strongly feasible in Step 3. Consequently, there exists a finite set
of strongly feasible boxes covering Y . With θT equal to the smallest width
of the boxes, the statement is proven.

2. We prove only the case when f(x) ≥ fε for an x ∈ Y . The proof
is similar when gj(x) ≥ 0 for any j = 1, 2, . . . , m. The inclusion property
ensures that max F (X) ≥ fε for all intervals X for which x ∈ X. The
conditions in Step 3 of the checking routine are then fulfilled for all intervals
containing x, and those intervals are then subdivided in Step 5. The interval
Y cannot be covered by a finite number of strongly feasible subintervals (cf.
Lemma 1), and hence the width of the actual subinterval would converge to
zero. This procedure is terminated when the width of the actual interval
becomes less than θ, and the interval Y is announced to be not strongly
feasible. 2

Notice that Lemma 2 ensures that a not strongly feasible interval Y will
always be detected in a finite number of steps. However, it is possible that a
strongly feasible interval will be mistaken as not strongly feasible if θ is too
large. Thus it is important that θ be chosen with care.

Consider, again, a fixed constrained nonlinear optimization problem as
given in section 1.1. Denote the result box calculated with the algorithm
parameters θ and η by X∗

θ,η, and the level set belonging to the function value
fε by Sfε

. The following theorems characterize the convergence properties of
our algorithm:

Theorem 1 If the set Sfε
∩ A is bounded, the seed point xseed fulfils the

conditions (3) and (4), d(i, j) > 0, and the properties (5) and (6) hold for
the inclusion functions F (X) and G(X), then there exist threshold values
θT > 0 and ηT > 0 such that for all θ: 0 < θ < θT and η: 0 < η < ηT

1. the algorithm stops after a finite number of steps,
2. the result box X∗

θ,η has a positive measure, and
3. the result interval X∗

θ,η is strongly feasible, X∗

θ,η ⊂ Sfε
∩ A.

Proof. 1. The number of checking routine iteration steps is determined by
Lemma 2 stating that with sufficiently small positive θ and η parameters,
a finite number of iteration steps are needed to decide the strong feasibil-
ity of a given interval. The question remains then whether the checking

10



routine is called only a finite number of times to fulfil the stopping condi-
tions of the main algorithm. The actual interval X of the main algorithm
grows monotonically, the step sizes d(i, 1), d(i, 2) (i = 1, 2, . . . , n) decrease
monotonically, and at each iteration at least one step size has to be greater
then η to continue the procedure. On the other hand, there exists a bounding
box Xmax for the bounded set Sfε

∩ A. This interval contains all the actual
boxes of our algorithm: X ⊆ Xmax. Hence the number of iterations of the
main algorithm in which the actual box X grows must be finite (at most
2n maxi w(|Xmax

i − xseed

i |)/η). This fact implies that the number of check-
ing routine calls in which the subinterval is found to be strongly feasible
(accepting calls) have to be finite.

Now the number of rejecting calls (which indicated the given subinterval
was not strongly feasible) of the checking routine must also be shown to be
finite. After each rejecting call, the stepsize is decreased to at most the half
of its previous value. The stepsize can only be decreased in a finite number
of times, because it must remain greater than the algorithm parameter η.
Hence the number of accepting and rejecting calls of the checking routine,
and thus also the number of objective and constraint function evaluations,
must be finite.

2. Assume that the result box X of our algorithm is of zero measure.
Then, at least in the direction of one coordinate axis, the width of X must
be zero. Let this direction be the one parallel to the xk coordinate axis.
Now the result box X is also strongly feasible, because the seed point xseed

and all intermediate intervals added to form X, are strongly feasible. Due
to the continuity of the functions f(x) and gj(x) (j = 1, 2, . . . , m) there
exists a positive number c such that the intervals X ′ = (X1, . . . , [min Xk −
c, min Xk], . . . , Xn) and X ′′ = (X1, . . . , [max Xk, max Xk + c], . . . , Xn) are
both strongly feasible. According to Lemma 2, both intervals X ′ and X ′′ are
accepted as strongly feasible by the checking routine with a sufficiently small
positive parameter θ. Hence, with parameter 0 < η < c, the result interval
has a positive width in the direction of the xk coordinate axis. This conveys
the proof of the positive measure of the result interval.

3. The result interval X∗

θ,η contains a finite number of subintervals ac-
cepted by the checking routine. Thus, according to Lemma 1, X∗

θ,η must be
strongly feasible. 2

11



Notice that the strong feasibility of the accepted intervals was utilised only
in proving the positive volume of the result intervals. With the exception
of this, the convergence results remain valid if the checking routine accepts
feasible intervals.

Theorem 2 describes the limit of the result boxes when the algorithm
parameters θ and η are equal and converge together to zero.

Theorem 2 If the conditions of Theorem 1 are fulfilled, then the limiting
interval X∗ = limθ→0 X∗

θ,θ exists, and X∗ is maximal in the sense that for
every box X ′ the relations X∗ ⊆ X ′ and X ′ ⊆ Sfε

∩ A imply X ′ = X∗.

Proof. The boundedness of the intervals X∗

θ,η and the monotonicity X∗

θ′,η′ ⊆
X∗

θ′′,η′′ if θ′ > θ′′ > 0 and η′ > η′′ > 0 imply the existence of the limiting
interval X∗.

Assume that there exists an interval X ′ such that X∗ ⊂ X ′ and X ′ ⊆
Sfε

∩ A. Then min X ′

i < min X∗

i or max X∗

i < max X ′

i must be true for an
i = 1, 2, . . . , n. For both cases, there exists an interval Y such that X∗ ∩ Y
is a side of X∗, Y ⊂ X ′, and Y is of positive measure. Lemma 2 ensures
that there exists a positive θT such that for every positive θ < θT the box
Y and all of its subintervals are accepted as strongly feasible. Thus with
ηT = mini w(Yi), and a θ that approaches zero, the algorithm accepts Y ,
which is contradictory. 2

The limiting interval X∗ is not necessarily strongly feasible. For example,
if Sfε

∩ A is an n-dimensional interval, then this may be a limiting interval
of a sequence of strongly feasible result intervals.

Theorem 1 suggests that for a problem satisfying its conditions, suffi-
ciently small positive θ and η values ensure a positive measure result interval
in a finite number of iteration steps, i.e. after a finite number of objective
and constraint function calls. Theorem 2 gives the basis that with θ and η
values close to the machine precision one may obtain a closely maximal result
box. It has to be stressed that beyond the given algorithm many others can
be given for the same problem, and that it is a very difficult problem to find
a maximal volume feasible interval (equivalent to a global optimization prob-
lem cf. [5]). In general, the location of a maximal volume feasible interval
can only be solved with a certain kind of backtracking.

12



3 Numerical testing and examples

Consider the following simple constrained quadratic problem to illustrate
how the algorithm discussed above proceeds. Let

f(x) = x2

1
+ x2

2
,

g1(x) = (3 − x1)
2 + (3 − x2)

2 − 18, and

g2(x) = 1 − (2 − x1)
2 − (2 − x2)

2.

The set of feasible points A is now the circle C1 with center at (3, 3) and
with a radius of 3

√
2 with the exceptions of the points of the circle C2 with

center (2, 2), and radius 1. The only global optimal point is at the origin, and
the optimal function value is f ∗ = f(0, 0) = 0. The level sets Sfε

are circles
around the origin with radii of

√
fε, respectively. The constraint g1(x) ≤ 0 is

active at the global minimum, and its normal is parallel to the line x1 = x2.
The inclusion functions are generated by natural interval extension:

F (X) = X2

1
+ X2

2
,

G1(X) = (3 − X1)
2 + (3 − X2)

2 − 18, and

G2(X) = 1 − (2 − X1)
2 − (2 − X2)

2.

The capital letters denote again intervals with the subscript indicating co-
ordinate direction. These inclusion functions are exact in the sense that the
so-called excess width (defined by w(F (X))−w(f(X))) is zero for every argu-
ment interval. It is unfortunately not typical for interval calculations, yet it
makes the demonstration of the working of the algorithm more transparent.

3.1 Assuming exact arithmetic

Set the seed point to xseed = (0.5, 0.5)T . The conditions (3) and (4) are now
fulfilled for each fε > 0.5:

g1(x
seed) = −5.5 < 0,

g2(x
seed) = −3.5 < 0,

f(xseed) = 0.5 < fε.

13



Choose the algorithm parameters d(i, 1) = d(i, 2) = 0.1 for i = 1, 2 and
η = 0.01. For fε = 2.0 the intersection set of feasible points and the level set
Sfε

is the intersection of the circles with centres (0, 0) and (3, 3), and with
radii

√
2 and 3

√
2, respectively. It is a convex set, and the maximal volume

inscribed box is X∗

1
= [0.0, 1.0], X∗

2
= [0.0, 1.0].

The starting interval is set to X1 = [0.5, 0.5] and X2 = [0.5, 0.5]. The
first check is made on the interval Y1 = [0.4, 0.5], Y2 = [0.5, 0.5]. The corre-
sponding inclusion function values are

F (Y ) = [0.4, 0.5]2 + [0.5, 0.5]2 = [0.16, 0.25] + [0.25, 0.25] = [0.41, 0.5],

G1(Y ) = [6.25, 6.76] + [6.25, 6.25] − 18 = [−5.5,−4.99]

and
G2(Y ) = 1 − [2.25, 2.56] − [2.25, 2.25] = [−3.81,−3.5].

The checking routine returns thus that Y is strongly feasible, and X is
set in Step 3 of the main algorithm to ([0.4, 0.5], [0.5, 0.5])T .

The next check is then made in Step 5 on the interval Y1 = [0.5, 0.6],
Y2 = [0.5, 0.5]. The corresponding inclusion function values are F (Y ) =
[0.5, 0.61], G1(Y ) = [−5.99,−5.5] and G2(Y ) = [−3.5,−3.21]. The actual
interval is then updated to X1 = [0.4, 0.6], X2 = [0.5, 0.5].

The actual interval is modified for i = 2 to ([0.4, 0.6], [0.4, 0.5])T , and then
to ([0.4, 0.6], [0.4, 0.6])T . The sequence of actual intervals is as follows:

X = ([0.3, 0.7], [0.3, 0.7])T ,

X = ([0.2, 0.8], [0.2, 0.8])T ,

X = ([0.1, 0.9], [0.1, 0.9])T .

The interval X was obtained after 48 inclusion function evaluations. The
calculation of inclusion functions involves on the average two times more
computation than the corresponding real functions do. Until this point was
reached, the checking routine accepted all the extension intervals Y immedi-
ately, without subdivision. Thus the value of the algorithm parameter θ had
no effect on this part of the result. In the next iteration the checked intervals
and the inclusion function values F (Y ) are as follows:

Y = ([0.9, 1.0], [0.1, 0.9])T , and F (Y ) = [0.82, 1.81],

14



Y = ([0.0, 0.1], [0.1, 0.9])T , and F (Y ) = [0.01, 0.82],

Y = ([0.0, 1.0], [0.9, 1.0])T , and F (Y ) = [0.81, 2.00].

The last interval is not strongly feasible, and a new d(2, 1) < 0.05 is deter-
mined (depending on the value of θ). Then

Y = ([0.0, 1.0], [0.0, 0.1])T , and F (Y ) = [0.00, 1.01],

and in this way X = ([0.0, 1.0], [0.0, 0.9])T .
With further calculations this actual interval may be refined to obtain a

maximal box X∗. We have a computational proof that each point x of the
actual boxes and the result interval is feasible, and f(x) < fε.

3.2 Computer implementation with outside rounding

The main difference between the results of section 3.1 and those obtained
by the computer program is that the latter is produced by operations with
outside rounding. For example, Y = ([0.0, 1.0], [0.9, 1.0])T would be found
feasible (but not strongly feasible) calculating with exact arithmetic (since
max F (Y ) = 2.0), while max F (Y ) > 2.0 if it is evaluated with outside
rounding. This is the reason why the results in the first line of Table 1
may be slightly different from those discussed in 3.1. It is worth men-
tioning, that if the stopping condition would be based on the difference
(min(Xi) − d(i, 1)) − min(Xi) then this value could also attain zero because
of the computer representation of floating point numbers.

15



Figure 2. Test problem and result intervals of the first and last lines of
Table 1.

16



Table 1. The role of the seed point in locating maximal feasible boxes.

xseed Xres vol(Xres) NFE

(0.50, 0.50)T ([−0.000028, 1.046680], [0.000098, 0.951000])T 0.99532 1822

(0.10, 0.10)T ([−0.000056, 1.000066], [0.000069, 0.999902])T 0.99996 1945

(0.01, 0.01)T ([−0.003131, 1.034968], [0.003153, 0.963763])T 0.99721 2065

(0.90, 0.90)T ([−0.000028, 1.000160], [0.000098, 0.999805])T 0.99989 2118

(0.10, 0.90)T ([−0.400226, 0.556738], [0.462630, 1.300000])T 0.80133 1610

(0.00, 1.00)T ([−0.425529, 0.522607], [0.496856, 1.314084])T 0.77484 1669

(−0.01, 0.10)T ([−0.072507, 0.990052], [0.074328, 1.009826])T 0.99402 1996

(4.0, 4.0)T ([2.662546, 6.048340], [2.749031, 5.9508304)T 10.841 3015

(5.0, 5.0)T ([2.600000, 6.048340], [2.800000, 5.9508246)T 10.865 2677

(3.0, 6.0)T ([1.732192, 4.267773], [3.000000, 7.0487793)T 10.266 2801

Table 1 contains details of the results on the numerical test that examines
how the place of the seed point affects the result box constructed by the
program. In the following, we use only one initial value for all d(i, j) step
sizes (i = 1, 2; j = 1, 2). All of the problem and algorithm parameters were
constant during this test (d(i, j) = 0.1 for i = 1, 2 and j = 1, 2, η = 0.0001
and θ = 0.0001), only xseed and fε was changed. The latter was 2.0 for
the first 7 lines and 72.0 for the last three. For the problem specified by
fε = 2.0, the maximal volume feasible box is X∗ = [0.0, 1.0]2. The result
interval calculated by the program is denoted by X res, and vol(Xres) is its
volume. The latter is found close to one (it is, of course, not greater than
vol(X∗) = 1). NFE stands for the number of function (F (X) and Gj(X) for
j = 1, 2, . . . , m) evaluations.

The test results presented in Table 1 suggest that the seed point may be
chosen close to the normal of the active constraint at x∗, even if it is outside
of X∗. It is interesting that the center of the maximal volume inscribed
box is not an optimal seed point. It also worth mentioning that in the
first 7 lines (where Sfε

∩ A is symmetric for the x1 = x2 line) the first
component of the result interval is always wider than the second one. The
explanation for it is that the actual interval is always enlarged first along the
first coordinate direction. Two result boxes are shown on Figure 2 together
with the constraint functions and the corresponding levels.

The algorithm stops if each subinterval to be checked is thinner than
η in the actual direction. A small η may ensure that the growing of the

17



Table 2. The effects of algorithm parameters η and θ on the volume of the
result box and on the number of function evaluations.

η 10−1 10−2 10−3 10−4 10−5 10−6

θ 10−6 10−6 10−6 10−6 10−6 10−6

vol(Xres) 0.90000 0.99542 0.99542 0.99542 0.99542 0.99542
NFE 480 1550 2546 3171 3921 4182

η 10−6 10−6 10−6 10−6 10−6 10−6

θ 10−2 10−3 10−4 10−5 10−6 10−7

vol(Xres) 0.97134 0.98906 0.99529 0.99541 0.99542 0.99542
NFE 376 762 1009 1303 1550 1836

η 10−2 10−3 10−4 10−5 10−6 10−7

θ 10−2 10−3 10−4 10−5 10−6 10−7

vol(Xres) 0.97134 0.99430 0.99532 0.99541 0.99542 0.99542
NFE 376 956 1882 3081 4182 6332

actual box is not stopped too early when further increase is still possible.
The procedure parameter θ gives the width of the interval that should be
regarded as hopeless for further subdivision. A smaller θ means more function
evaluations, but also the recognition of a not strongly feasible subinterval will
be more reliable. Thus both η and θ help determine when the algorithm stops.
Table 2 shows the combined effect of these parameters on the volume of the
result box and the number of function evaluations required. The problem
setting was the same as in Table 1 (fε = 2.0), except the seed point was
always xseed = (0.5, 0.5)T .

As it can be seen in Table 2, the total number of function evaluations
NFE is growing only slightly with the decrease of θ. This phenomenon is
in a nice accordance with the findings of [6]. No θ ≥ 0.1 value was studied,
since then no increase of the initial box can be achieved (cf. the comments
after the checking routine). Similarly, a setting η > 0.1 does not make sense,
since then the algorithm stops after the first iteration regardless of the given
problem. According to the test results comprised in Table 2, the algorithm
parameters should be set to small values ensuring relatively large result boxes
at moderate computational costs.

18



Table 3. The effect of the initial step size d(i, j) on the volume of the result
box and on the number of function evaluations.

d(i, j) 10 1 10−1 10−2 10−3 10−4

vol(Xres) 0.91723 0.99666 0.99542 0.99995 0.9999977 1.00000
NFE 5290 4949 4128 3525 8245 61618

Table 3 shows the results of the numerical test that examines how the
algorithm parameter d(i, j) affects the result box constructed by the program
and the number of function evaluations. All other problem and algorithm
parameters (fε = 2.0, xseed = (0.5, 0.5)T , η = 10−6 and θ = 10−6) were the
same for the runs of this test.

According to the test results presented in Table 3, the choosing of the
initial step size has a major impact on the volume of the result box, and —
at least in this particular case — the maximal volume feasible box can well
be approximated with a suitable d(i, j). In a practical problem, however,
it may be difficult to set the initial step size to obtain a large result box
efficiently.

For practical problems, our method is used with given approximations
of the global minimum and the global minimum point. Table 4 shows some
sample runs demonstrating the results of the algorithm when multiple levels
are used to highlight the relation between fε and the tolerances. The seed
points were simply chosen as feasible points along the normal to the active
constraint. The initial step sizes were set to about two orders of magnitude
smaller than the anticipated width of Sfε

∩ A in every direction.
For fε = 100.0 and fε = 10.0 the respective feasibility sets (Sfε

∩ A) are
not convex. The growing of the actual box is stopped only by the constraints
Gj(X) ≤ 0 (j = 1, 2) and not by F (X) ≤ fε. This is why the first two
rows in Table 4 give the same results. Otherwise the result set seemingly
approximates the global minimum point x∗ as fε approximates the global
minimum f ∗. There is an obvious trade-off between the degree of subopti-
mality characterized by the level fε and the parameter tolerances (the width
of the result intervals). The algorithm is also capable of giving the lower
and upper bounds for the function values of points inside the result set X res,
which bounds may be much tighter than [f ∗, fε].

The presented algorithm was also applied to a real life engineering design

19



Table 4. Sample runs with different levels approximating the optimal value.

fε d(i, j) xseed Xres vol(Xres) NFE
100.0 1.0 1.0 [-0.0000003, 1.9999981] 1.999996 5787

1.0 [0.0000010, 1.0000000]
10.0 1.0 1.0 [-0.0000003, 1.9999981] 1.999996 5787

1.0 [0.0000010, 1.0000000]
2.0 10−2 10−1 [-0.0000005, 1.0049500] 0.999950 3939

10−1 [0.0000006, 0.9950249]
1.0 10−2 10−1 [-0.0000005, 0.7113538] 0.499963 4152

10−1 [0.0000006, 0.7028336]
10−1 10−3 10−2 [-0.0004998, 0.2240527] 0.049999 4569

10−2 [0.0004999, 0.2231596]
10−2 10−4 10−3 [-0.0000496, 0.0707105] 0.0049999 9569

10−3 [0.0000504, 0.0707104]
10−3 10−5 10−4 [-0.0000047, 0.0223600] 0.00049996 27258

10−4 [0.0000531, 0.0223600]

problem to construct manufacturing tolerances for an optimal design of com-
posite materials [17] that motivated our study. The numerical experiences
on this composite laminate design problem will be reported in a forthcoming
paper.

References

[1] G. Alefeld and J. Herzberger, Introduction to Interval Calculations (Aca-
demic Press, New York, 1983).

[2] J.H. Bleher, S.M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W.
Walter, FORTRAN-SC. A study of a FORTRAN extension for engineer-
ing/scientific computation with access to ACRITH, Computing 39(1987)
93-110.

[3] J.D. Buys and F. Gonin, The use of Augmented Lagrangian functions
for sensitivity analysis in nonlinear programming, Mathematical Pro-
gramming 12(1977) 281-284.

20



[4] T. Csendes, An interval method for bounding level sets of parameter
estimation problems, Computing 41(1989) 75-86.

[5] T. Csendes, Interval method for bounding level sets: revisited and tested
with global optimization problems, BIT 30(1990) 650-657.

[6] T. Csendes and J. Pintér, A new interval method for locating the bound-
ary of level sets, Int. J. of Computer Mathematics 46(1993) in press.

[7] A.V. Fiacco, Sensitivity analysis for nonlinear programming using
penalty methods, Mathematical Programming 12(1976) 287-311.

[8] C.A. Floudas and P.M. Pardalos, A collection of test problems for con-
strained global optimization algorithms (Lecture Notes in Computer Sci-
ence Vol. 455, Springer-Verlag, New York, 1990).

[9] H.-P. Jüllig, BIBINS/2.0 — C++ Bibliotheken für Vektoren und
Matrizen über beliebigem skalaren Datentyp unter Berücksichtigung
spezieller spärlicher Strukturen sowie Intervalldatentypen, Bericht 92.6,
Technical University of Hamburg-Harburg (1992).

[10] R.B. Kearfott, An interval branch and bound algorithm for bound con-
strained optimization problems, J. Global Optimization 2(1992) 259-
280.

[11] R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich, PASCAL-
XSC — Language Reference with Examples (Springer-Verlag, Berlin,
1992).

[12] Z. Kovács, F. Friedler and L.T. Fan, Recycling in a separation process
structure, AIChE J. (1993) accepted for publication.

[13] Ch. Lawo, C-XSC — A Programming Environment for Verified Scientific
Computing and Numerical Data Processing, Manuscript, University of
Karlsruhe (1991).

[14] K.R. Lutchen and A.C. Jackson, Confidence bounds on respiratory me-
chanical properties estimated from transfer versus input impedance in
humans versus dogs, IEEE T. on Biomedical Engineering 39(1992) 644-
651.

21



[15] H. Ratschek and J. Rokne, Computer Methods for the Range of Func-
tions (Ellis Horwood, Chichester, 1984).

[16] H. Ratschek and J. Rokne, A circuit design problem, Paper presented
at the II. Workshop on Global Optimization, Sopron, Hungary, 1990.
(to be published in the J. Global Optimization)

[17] Z.B. Zabinsky, D.L. Graesser, M.E. Tuttle and G.I. Kim, Global op-
timization of composite laminates using Improving Hit-and-Run, in:
Recent Advances in Global Optimization, Princeton University Press,
Princeton (1992) p. 343-368.

22


